Suppr超能文献

细菌因限制修饰系统产生的自身免疫

Bacterial Autoimmunity Due to a Restriction-Modification System.

机构信息

Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.

Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA.

出版信息

Curr Biol. 2016 Feb 8;26(3):404-9. doi: 10.1016/j.cub.2015.12.041. Epub 2016 Jan 21.

Abstract

Restriction-modification (RM) systems represent a minimal and ubiquitous biological system of self/non-self discrimination in prokaryotes [1], which protects hosts from exogenous DNA [2]. The mechanism is based on the balance between methyltransferase (M) and cognate restriction endonuclease (R). M tags endogenous DNA as self by methylating short specific DNA sequences called restriction sites, whereas R recognizes unmethylated restriction sites as non-self and introduces a double-stranded DNA break [3]. Restriction sites are significantly underrepresented in prokaryotic genomes [4-7], suggesting that the discrimination mechanism is imperfect and occasionally leads to autoimmunity due to self-DNA cleavage (self-restriction) [8]. Furthermore, RM systems can promote DNA recombination [9] and contribute to genetic variation in microbial populations, thus facilitating adaptive evolution [10]. However, cleavage of self-DNA by RM systems as elements shaping prokaryotic genomes has not been directly detected, and its cause, frequency, and outcome are unknown. We quantify self-restriction caused by two RM systems of Escherichia coli and find that, in agreement with levels of restriction site avoidance, EcoRI, but not EcoRV, cleaves self-DNA at a measurable rate. Self-restriction is a stochastic process, which temporarily induces the SOS response, and is followed by DNA repair, maintaining cell viability. We find that RM systems with higher restriction efficiency against bacteriophage infections exhibit a higher rate of self-restriction, and that this rate can be further increased by stochastic imbalance between R and M. Our results identify molecular noise in RM systems as a factor shaping prokaryotic genomes.

摘要

限制修饰(RM)系统代表了原核生物中自我/非我区分的最小和普遍存在的生物学系统[1],它可以保护宿主免受外源 DNA 的侵害[2]。该机制基于甲基转移酶(M)和同源限制内切酶(R)之间的平衡。M 通过甲基化称为限制位点的短特定 DNA 序列来标记内源性 DNA 为自我,而 R 则将未甲基化的限制位点识别为非自我,并引入双链 DNA 断裂[3]。原核生物基因组中的限制位点明显不足[4-7],这表明这种区分机制并不完美,并且由于自我 DNA 的切割(自我限制),偶尔会导致自身免疫[8]。此外,RM 系统可以促进 DNA 重组[9],并有助于微生物种群的遗传变异,从而促进适应性进化[10]。然而,RM 系统作为塑造原核基因组的元素切割自我 DNA 的情况尚未直接检测到,其原因、频率和结果尚不清楚。我们量化了两种大肠杆菌 RM 系统引起的自我限制,发现与限制位点避免水平一致,EcoRI 而非 EcoRV 以可测量的速度切割自我 DNA。自我限制是一个随机过程,它会暂时诱导 SOS 反应,然后通过 DNA 修复来维持细胞活力。我们发现,对噬菌体感染具有更高限制效率的 RM 系统表现出更高的自我限制率,并且通过 R 和 M 之间的随机不平衡,可以进一步增加这种速率。我们的结果确定了 RM 系统中的分子噪声是塑造原核基因组的因素之一。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验