Yang Chen, Yan Zhiqiang, Zhao Bo, Wang Julei, Gao Guodong, Zhu Junling, Wang Wenting
Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, PR China.
Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China.
Neuropharmacology. 2016 Jun;105:258-269. doi: 10.1016/j.neuropharm.2016.01.026. Epub 2016 Jan 22.
The high-voltage spindles (HVSs), one of the characteristic oscillations that include theta frequencies in the basal ganglia (BG)-cortical system, are involved in immobile behavior and show increasing power in Parkinson's disease (PD). Our previous results suggested that the D2 dopamine receptor might be involved in HVSs modulations in a rat model of PD. Membrane resonance is one of the cellular mechanisms of network oscillation; therefore, we investigated how dopamine modulates the theta frequency membrane resonance of neurons in the subthalamic nucleus (STN), a central pacemaker of BG, and whether such changes in STN neurons subsequently alter HVSs in the BG-cortical system. In particular, we tested whether dopamine modulates HVSs through hyperpolarization-activated cyclic nucleotide-gated (HCN) channels-dependent membrane resonance in STN neurons. We found that an antagonist of D2 receptors, but not of D1 receptors, inhibited membrane resonance and HCN currents of STN neurons through a G-protein activity in acute brain slices. Our further in vivo experiments using local injection of a D2 receptor antagonist or an HCN blocker in STNs of free-moving rats showed an increase in HVSs power and correlation in the BG-cortical system. Local injection of lamotrigine, an HCN agonist, counteracted the effect induced by the D2 antagonist. Taken together, our results revealed a potential cellular mechanism underlying HVSs activity modulation in the BG-cortical system, i.e. tuning HCN activities in STN neurons through dopamine D2 receptors. Our findings might lead to a new direction in PD treatment by providing promising new drug targets for HVSs activity modulation.
高压纺锤波(HVSs)是基底神经节(BG)-皮质系统中包含θ频率的特征性振荡之一,与静止行为有关,且在帕金森病(PD)中其功率增加。我们之前的结果表明,D2多巴胺受体可能参与了PD大鼠模型中HVSs的调节。膜共振是网络振荡的细胞机制之一;因此,我们研究了多巴胺如何调节底丘脑核(STN)神经元的θ频率膜共振,STN是BG的中央起搏器,以及STN神经元的这种变化是否随后会改变BG-皮质系统中的HVSs。特别是,我们测试了多巴胺是否通过STN神经元中依赖超极化激活环核苷酸门控(HCN)通道的膜共振来调节HVSs。我们发现,D2受体拮抗剂而非D1受体拮抗剂,通过急性脑片中的G蛋白活性抑制了STN神经元的膜共振和HCN电流。我们进一步在自由活动大鼠的STN中局部注射D2受体拮抗剂或HCN阻滞剂的体内实验表明,BG-皮质系统中HVSs的功率和相关性增加。局部注射HCN激动剂拉莫三嗪可抵消D2拮抗剂诱导的效应。综上所述,我们的结果揭示了BG-皮质系统中HVSs活性调节的潜在细胞机制,即通过多巴胺D2受体调节STN神经元中的HCN活性。我们的发现可能为调节HVSs活性提供有前景的新药物靶点,从而为PD治疗带来新方向。