Suppr超能文献

种系和体细胞错义变异对药物结合位点的影响。

Impact of germline and somatic missense variations on drug binding sites.

作者信息

Yan C, Pattabiraman N, Goecks J, Lam P, Nayak A, Pan Y, Torcivia-Rodriguez J, Voskanian A, Wan Q, Mazumder R

机构信息

Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC, USA.

MolBox LLC, Silver Spring, MD, USA.

出版信息

Pharmacogenomics J. 2017 Mar;17(2):128-136. doi: 10.1038/tpj.2015.97. Epub 2016 Jan 26.

Abstract

Advancements in next-generation sequencing (NGS) technologies are generating a vast amount of data. This exacerbates the current challenge of translating NGS data into actionable clinical interpretations. We have comprehensively combined germline and somatic nonsynonymous single-nucleotide variations (nsSNVs) that affect drug binding sites in order to investigate their prevalence. The integrated data thus generated in conjunction with exome or whole-genome sequencing can be used to identify patients who may not respond to a specific drug because of alterations in drug binding efficacy due to nsSNVs in the target protein's gene. To identify the nsSNVs that may affect drug binding, protein-drug complex structures were retrieved from Protein Data Bank (PDB) followed by identification of amino acids in the protein-drug binding sites using an occluded surface method. Then, the germline and somatic mutations were mapped to these amino acids to identify which of these alter protein-drug binding sites. Using this method we identified 12 993 amino acid-drug binding sites across 253 unique proteins bound to 235 unique drugs. The integration of amino acid-drug binding sites data with both germline and somatic nsSNVs data sets revealed 3133 nsSNVs affecting amino acid-drug binding sites. In addition, a comprehensive drug target discovery was conducted based on protein structure similarity and conservation of amino acid-drug binding sites. Using this method, 81 paralogs were identified that could serve as alternative drug targets. In addition, non-human mammalian proteins bound to drugs were used to identify 142 homologs in humans that can potentially bind to drugs. In the current protein-drug pairs that contain somatic mutations within their binding site, we identified 85 proteins with significant differential gene expression changes associated with specific cancer types. Information on protein-drug binding predicted drug target proteins and prevalence of both somatic and germline nsSNVs that disrupt these binding sites can provide valuable knowledge for personalized medicine treatment. A web portal is available where nsSNVs from individual patient can be checked by scanning against DrugVar to determine whether any of the SNVs affect the binding of any drug in the database.

摘要

下一代测序(NGS)技术的进步正在产生大量数据。这加剧了当前将NGS数据转化为可操作的临床解释的挑战。我们全面整合了影响药物结合位点的种系和体细胞非同义单核苷酸变异(nsSNV),以研究它们的普遍性。由此产生的与外显子组或全基因组测序相结合的整合数据,可用于识别那些由于靶蛋白基因中的nsSNV导致药物结合效力改变而可能对特定药物无反应的患者。为了识别可能影响药物结合的nsSNV,从蛋白质数据库(PDB)中检索蛋白质-药物复合物结构,然后使用封闭表面法识别蛋白质-药物结合位点中的氨基酸。然后,将种系和体细胞突变映射到这些氨基酸上,以确定其中哪些会改变蛋白质-药物结合位点。使用这种方法,我们在与235种独特药物结合的253种独特蛋白质中确定了12993个氨基酸-药物结合位点。氨基酸-药物结合位点数据与种系和体细胞nsSNV数据集的整合揭示了3133个影响氨基酸-药物结合位点的nsSNV。此外,基于蛋白质结构相似性和氨基酸-药物结合位点的保守性进行了全面的药物靶点发现。使用这种方法,鉴定出81个旁系同源物可作为替代药物靶点。此外,与药物结合的非人类哺乳动物蛋白质被用于识别142个在人类中可能与药物结合的同源物。在当前其结合位点内含有体细胞突变的蛋白质-药物对中,我们鉴定出85种蛋白质,其基因表达变化与特定癌症类型存在显著差异。关于蛋白质-药物结合的信息预测了药物靶蛋白以及破坏这些结合位点的体细胞和种系nsSNV的普遍性,可为个性化医疗治疗提供有价值的知识。有一个网络门户可供使用,通过与DrugVar进行比对扫描,可以检查个体患者的nsSNV,以确定是否有任何SNV影响数据库中任何药物的结合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/848b/5380835/904f4ca0b17d/tpj201597f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验