Suppr超能文献

一种计算方法,用于从无匹配正常样本的癌症标本深度测序中区分基因组改变的体细胞起源与种系起源。

A computational approach to distinguish somatic vs. germline origin of genomic alterations from deep sequencing of cancer specimens without a matched normal.

机构信息

Foundation Medicine, Inc., Cambridge, MA, United States of America.

Institut National de la Santé et de la Recherche Médicale (INSERM) U981, Gustave Roussy, Villejuif Grand, Paris, France.

出版信息

PLoS Comput Biol. 2018 Feb 7;14(2):e1005965. doi: 10.1371/journal.pcbi.1005965. eCollection 2018 Feb.

Abstract

A key constraint in genomic testing in oncology is that matched normal specimens are not commonly obtained in clinical practice. Thus, while well-characterized genomic alterations do not require normal tissue for interpretation, a significant number of alterations will be unknown in whether they are germline or somatic, in the absence of a matched normal control. We introduce SGZ (somatic-germline-zygosity), a computational method for predicting somatic vs. germline origin and homozygous vs. heterozygous or sub-clonal state of variants identified from deep massively parallel sequencing (MPS) of cancer specimens. The method does not require a patient matched normal control, enabling broad application in clinical research. SGZ predicts the somatic vs. germline status of each alteration identified by modeling the alteration's allele frequency (AF), taking into account the tumor content, tumor ploidy, and the local copy number. Accuracy of the prediction depends on the depth of sequencing and copy number model fit, which are achieved in our clinical assay by sequencing to high depth (>500x) using MPS, covering 394 cancer-related genes and over 3,500 genome-wide single nucleotide polymorphisms (SNPs). Calls are made using a statistic based on read depth and local variability of SNP AF. To validate the method, we first evaluated performance on samples from 30 lung and colon cancer patients, where we sequenced tumors and matched normal tissue. We examined predictions for 17 somatic hotspot mutations and 20 common germline SNPs in 20,182 clinical cancer specimens. To assess the impact of stromal admixture, we examined three cell lines, which were titrated with their matched normal to six levels (10-75%). Overall, predictions were made in 85% of cases, with 95-99% of variants predicted correctly, a significantly superior performance compared to a basic approach based on AF alone. We then applied the SGZ method to the COSMIC database of known somatic variants in cancer and found >50 that are in fact more likely to be germline.

摘要

肿瘤基因组检测的一个主要限制是在临床实践中通常无法获得匹配的正常样本。因此,虽然对于特征明确的基因组改变,无需正常组织即可进行解读,但如果没有匹配的正常对照,很大一部分改变将无法确定其是种系来源还是体细胞来源,也无法确定其是杂合子还是亚克隆状态。我们引入了 SGZ(体细胞-种系-同质性),这是一种用于预测从癌症样本的深度平行测序(MPS)中鉴定的变体的体细胞与种系起源以及纯合子与杂合子或亚克隆状态的计算方法。该方法不需要患者匹配的正常对照,因此可以广泛应用于临床研究。SGZ 通过对每个改变的等位基因频率(AF)进行建模,考虑肿瘤含量、肿瘤倍性和局部拷贝数,来预测改变的体细胞与种系状态。预测的准确性取决于测序深度和拷贝数模型拟合度,这在我们的临床检测中通过使用 MPS 进行高深度测序(>500x)来实现,覆盖 394 个癌症相关基因和 3500 多个全基因组单核苷酸多态性(SNP)。通过基于读深度和 SNP AF 局部变异性的统计信息来进行检测。为了验证该方法,我们首先在 30 名肺癌和结肠癌患者的样本中评估了性能,我们对肿瘤和匹配的正常组织进行了测序。我们检查了 20182 例临床癌症样本中 17 个体细胞热点突变和 20 个常见种系 SNP 的预测结果。为了评估基质混合物的影响,我们检查了三个细胞系,将其与匹配的正常组织以六种水平(10-75%)滴定。总体而言,85%的情况下可以进行预测,95-99%的变体预测正确,与仅基于 AF 的基本方法相比,性能显著提高。然后,我们将 SGZ 方法应用于癌症中已知体细胞变体的 COSMIC 数据库,发现>50 个实际上更可能是种系来源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1144/5832436/e6aa10657497/pcbi.1005965.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验