Rivier Nicolas, Sadoc Jean-François, Charvolin Jean
Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg, F-67084, Strasbourg, France.
Laboratoire de Physique des Solides, CNRS, Université Paris-Saclay, Université de Paris-Sud, F-91405, Orsay, France.
Eur Phys J E Soft Matter. 2016 Jan;39(1):7. doi: 10.1140/epje/i2016-16007-8. Epub 2016 Jan 28.
Phyllotaxis describes the arrangement of florets, scales or leaves in composite flowers or plants (daisy, aster, sunflower, pinecone, pineapple). As a structure, it is a geometrical foam, the most homogeneous and densest covering of a large disk by Voronoi cells (the florets), constructed by a simple algorithm: Points placed regularly on a generative spiral constitute a spiral lattice, and phyllotaxis is the tiling by the Voronoi cells of the spiral lattice. Locally, neighboring cells are organized as three whorls or parastichies, labelled with successive Fibonacci numbers. The structure is encoded as the sequence of the shapes (number of sides) of the successive Voronoi cells on the generative spiral. We show that sequence and organization are independent of the position of the initial point on the generative spiral, that is invariant under disappearance (T2 of the first Voronoi cell or, conversely, under creation of a first cell, that is under growth. This independence shows how a foam is able to respond to a shear stress, notably through grain boundaries that are layers of square cells slightly truncated into heptagons, pentagons and hexagons, meeting at four-corner vertices, critical points of T1 elementary topological transformations.
叶序描述了复合花或植物(雏菊、紫菀、向日葵、松果、菠萝)中小花、鳞片或叶子的排列方式。作为一种结构,它是一种几何泡沫,是由Voronoi细胞(小花)对大圆盘进行的最均匀、最密集的覆盖,通过一种简单的算法构建而成:规则地放置在生成螺旋上的点构成一个螺旋晶格,而叶序就是螺旋晶格的Voronoi细胞平铺。在局部,相邻细胞被组织成三个轮或斜列线,用连续的斐波那契数标记。该结构被编码为生成螺旋上连续Voronoi细胞的形状(边数)序列。我们表明,序列和组织与生成螺旋上起始点的位置无关,即在第一个Voronoi细胞消失时(或相反,在第一个细胞产生时,即在生长时)是不变的。这种独立性表明了泡沫如何能够响应剪切应力,特别是通过晶界,晶界是由正方形细胞层略微截短而成的七边形、五边形和六边形,在四角顶点相遇,这些顶点是T1基本拓扑变换的临界点。