Lawrence Patrick G, Patil Pritam S, Leipzig Nic D, Lapitsky Yakov
Department of Chemical and Environmental Engineering, University of Toledo , Toledo, Ohio 43606, United States.
Department of Chemical and Biomolecular Engineering, University of Akron , Akron, Ohio 44325, United States.
ACS Appl Mater Interfaces. 2016 Feb;8(7):4323-35. doi: 10.1021/acsami.5b10070. Epub 2016 Feb 11.
Long-term (multiple-week or -month) release of small, water-soluble molecules from hydrogels remains a significant pharmaceutical challenge, which is typically overcome at the expense of more-complicated drug carrier designs. Such approaches are payload-specific and include covalent conjugation of drugs to base materials or incorporation of micro- and nanoparticles. As a simpler alternative, here we report a mild and simple method for achieving multiple-month release of small molecules from gel-like polymer networks. Densely cross-linked matrices were prepared through ionotropic gelation of poly(allylamine hydrochloride) (PAH) with either pyrophosphate (PPi) or tripolyphosphate (TPP), all of which are commonly available commercial molecules. The loading of model small molecules (Fast Green FCF and Rhodamine B dyes) within these polymer networks increases with the payload/network binding strength and with the PAH and payload concentrations used during encapsulation. Once loaded into the PAH/PPi and PAH/TPP ionic networks, only a few percent of the payload is released over multiple months. This extended release is achieved regardless of the payload/network binding strength and likely reflects the small hydrodynamic mesh size within the gel-like matrices. Furthermore, the PAH/TPP networks show promising in vitro cytocompatibility with model cells (human dermal fibroblasts), though slight cytotoxic effects were exhibited by the PAH/PPi networks. Taken together, the above findings suggest that PAH/PPi and (especially) PAH/TPP networks might be attractive materials for the multiple-month delivery of drugs and other active molecules (e.g., fragrances or disinfectants).
从水凝胶中长期(数周或数月)释放小的水溶性分子仍然是一项重大的制药挑战,通常需要采用更复杂的药物载体设计来克服这一挑战。此类方法是针对特定有效载荷的,包括将药物共价连接到基础材料上或加入微米和纳米颗粒。作为一种更简单的替代方法,我们在此报告一种温和且简便的方法,可实现小分子从凝胶状聚合物网络中数月的释放。通过聚(烯丙胺盐酸盐)(PAH)与焦磷酸(PPi)或三聚磷酸(TPP)进行离子凝胶化制备了高度交联的基质,所有这些都是常见的商业分子。这些聚合物网络中模型小分子(固绿FCF和罗丹明B染料)的负载量随有效载荷/网络结合强度以及封装过程中使用的PAH和有效载荷浓度的增加而增加。一旦加载到PAH/PPi和PAH/TPP离子网络中,在数月内只有百分之几的有效载荷会释放。无论有效载荷/网络结合强度如何,均可实现这种长效释放,这可能反映了凝胶状基质内较小的流体动力学网格尺寸。此外,PAH/TPP网络对模型细胞(人皮肤成纤维细胞)显示出有前景的体外细胞相容性,不过PAH/PPi网络表现出轻微的细胞毒性作用。综上所述,上述发现表明PAH/PPi和(尤其是)PAH/TPP网络可能是用于数月递送药物和其他活性分子(如香料或消毒剂)的有吸引力的材料。