IEEE Trans Image Process. 2016 Mar;25(3):1425-40. doi: 10.1109/TIP.2016.2521180.
There is growing demand for accuracy in image processing and visualization, and the super-resolution (SR) technique for multi-observed RGB-D images has become popular, because it provides space-redundant information and produces a detailed reconstruction even with a large magnification factor. This technique has been thoroughly investigated in recent years. Nevertheless, technical challenges remain, such as finding sub-pixel correspondences with low-resolution (LR) observations, exploiting space-redundant information, formulating space homogeneity constraints, and leveraging cross-image similarities in structures. To address these challenges, this paper proposes a unified optimization framework to estimate both the super-resolved RGB image and the super-resolved depth image from the multi-observed LR RGB-D images using their correlations. Using depth-assisted cross-image correspondences, the RGB image SR problem is formulated as an effective regularization function by incorporating the normalized bilateral total variation regularizer, and it is efficiently solved by a first-order primal-dual algorithm. The depth image SR estimate can be obtained by minimizing a nonlocal regression-based energy, which integrates the structural cues of the super-resolved RGB image in a detail-preserving fashion. Essentially, our unified optimization framework uses the RGB image and depth image as a priori knowledge that the SR process uses for better accuracy. Our extensive experiments on public RGB-D benchmarks and real data and our quantitative comparison with several state-of-the-art methods demonstrate the superiority of our method in terms of accuracy, versatility, and reliability of details and sharp feature preservation.
图像处理和可视化的准确性需求日益增长,多观测 RGB-D 图像的超分辨率 (SR) 技术变得流行,因为它提供了空间冗余信息,即使放大倍数很大,也能产生详细的重建。近年来,该技术已经得到了深入研究。然而,仍然存在技术挑战,例如找到具有低分辨率 (LR) 观测值的亚像素对应关系、利用空间冗余信息、制定空间同质性约束条件以及利用结构中的跨图像相似性。为了解决这些挑战,本文提出了一个统一的优化框架,用于利用多观测 LR RGB-D 图像的相关性,从这些图像中估计超分辨率 RGB 图像和超分辨率深度图像。通过使用深度辅助的跨图像对应关系,将 RGB 图像 SR 问题表述为一个有效的正则化函数,通过将归一化双边全变差正则化器纳入其中,并通过一阶原对偶算法有效地求解。通过最小化基于非局部回归的能量来获得深度图像 SR 估计,该能量以保留细节的方式集成了超分辨率 RGB 图像的结构线索。本质上,我们的统一优化框架将 RGB 图像和深度图像用作 SR 过程使用的先验知识,以提高准确性。我们在公共 RGB-D 基准和真实数据上进行了广泛的实验,并与几种最先进的方法进行了定量比较,证明了我们的方法在准确性、通用性、细节和锐利特征保持的可靠性方面具有优势。