Suppr超能文献

基于无空间退化的多阶段方案的高光谱图像超分辨率

Hyperspectral image super-resolution via a multi-stage scheme without employing spatial degradation.

作者信息

Cao Xuheng, Lian Yusheng, Liu Zilong, Zhou Han, Wang Bin, Zhang Wan, Huang Beiqing

出版信息

Opt Lett. 2022 Oct 1;47(19):5184-5187. doi: 10.1364/OL.473020.

Abstract

Recently, it has become popular to obtain a high spatial resolution hyperspectral image (HR-HSI) by fusing a low spatial resolution hyperspectral image (LR-HSI) with a high spatial resolution RGB image (HR-RGB). Existing HSI super-resolution methods are designed based on a known spatial degeneration. In practice, it is difficult to obtain correct spatial degradation, which restricts the performance of existing methods. Therefore, we propose a multi-stage scheme without employing the spatial degradation model. The multi-stage scheme consists of three stages: initialization, modification, and refinement. According to the angle similarity between the HR-RGB pixel and LR-HSI spectra, we first initialize a spectrum for each HR-RGB pixel. Then, we propose a polynomial function to modify the initialized spectrum so that the RGB color values of the modified spectrum are the same as the HR-RGB. Finally, the modified HR-HSI is refined by a proposed optimization model, in which a novel, to the best of our knowledge, spectral-spatial total variation (SSTV) regularizer is investigated to keep the spectral and spatial structure of the reconstructed HR-HSI. The experimental results on two public datasets and our real-world images demonstrate our method outperforms eight state-of-the-art existing methods in terms of both reconstruction accuracy and computational efficiency.

摘要

最近,通过将低空间分辨率高光谱图像(LR-HSI)与高空间分辨率RGB图像(HR-RGB)融合来获取高空间分辨率高光谱图像(HR-HSI)已变得流行起来。现有的高光谱图像超分辨率方法是基于已知的空间退化设计的。在实际中,很难获得正确的空间退化,这限制了现有方法的性能。因此,我们提出了一种不采用空间退化模型的多阶段方案。该多阶段方案由三个阶段组成:初始化、修改和细化。根据HR-RGB像素与LR-HSI光谱之间的角度相似性,我们首先为每个HR-RGB像素初始化一个光谱。然后,我们提出一个多项式函数来修改初始化的光谱,以使修改后的光谱的RGB颜色值与HR-RGB相同。最后,通过一个提出的优化模型对修改后的HR-HSI进行细化,在该模型中,据我们所知,研究了一种新颖的光谱-空间全变差(SSTV)正则化器,以保持重建的HR-HSI的光谱和空间结构。在两个公共数据集和我们的真实世界图像上的实验结果表明,我们的方法在重建精度和计算效率方面均优于八种现有的最先进方法。

相似文献

3
Hyperspectral image super-resolution via spectral matching and correction.
J Opt Soc Am A Opt Image Sci Vis. 2023 Aug 1;40(8):1635-1643. doi: 10.1364/JOSAA.491595.
4
Hyperspectral Image Super Resolution With Real Unaligned RGB Guidance.
IEEE Trans Neural Netw Learn Syst. 2025 Feb;36(2):2999-3011. doi: 10.1109/TNNLS.2023.3340561. Epub 2025 Feb 6.
6
Hyperspectral Image Super-resolution via Subspace-Based Low Tensor Multi-Rank Regularization.
IEEE Trans Image Process. 2019 May 20. doi: 10.1109/TIP.2019.2916734.
7
Spatial-Spectral Structured Sparse Low-Rank Representation for Hyperspectral Image Super-Resolution.
IEEE Trans Image Process. 2021;30:3084-3097. doi: 10.1109/TIP.2021.3058590. Epub 2021 Feb 24.
8
Deep Unsupervised Fusion Learning for Hyperspectral Image Super Resolution.
Sensors (Basel). 2021 Mar 28;21(7):2348. doi: 10.3390/s21072348.
9
Spectral Representation vis Data-Guided Sparsity for Hyperspectral Image Super-Resolution.
Sensors (Basel). 2019 Dec 7;19(24):5401. doi: 10.3390/s19245401.
10
Deep Hyperspectral Image Sharpening.
IEEE Trans Neural Netw Learn Syst. 2018 Nov;29(11):5345-5355. doi: 10.1109/TNNLS.2018.2798162. Epub 2018 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验