Suppr超能文献

有机阴离子与层状双氢氧化物纳米片相互作用中键的能量与结构:一项分子动力学研究

Energy and structure of bonds in the interaction of organic anions with layered double hydroxide nanosheets: A molecular dynamics study.

作者信息

Tsukanov A A, Psakhie S G

机构信息

Skolkovo Institute of Science and Technologies, Moscow, 143026, Russia.

Tomsk Polytechnic University, Tomsk, 634050, Russia.

出版信息

Sci Rep. 2016 Jan 28;6:19986. doi: 10.1038/srep19986.

Abstract

The application of hybrid and hierarchical nanomaterials based on layered hydroxides and oxyhydroxides of metals is a swiftly progressing field in biomedicine. Layered double hydroxides (LDH) possess a large specific surface area, significant surface electric charge and biocompatibility. Their physical and structural properties enable them to adsorb various kinds of anionic species and to transport them into cells. However, possible side effects resulting from the interaction of LDH with anions of the intercellular and intracellular medium need to be considered, since such interaction can potentially disrupt ion transport, signaling processes, apoptosis, nutrition and proliferation of living cells. In the present paper molecular dynamics is used to determine the energies of interaction of organic anions (aspartic acid, glutamic acid and bicarbonate) with a fragment of layered double hydroxide Mg/Al-LDH. The average number of hydrogen bonds between the anions and the hydroxide surface and characteristic binding configurations are determined. Possible effects of LDH on the cell resulting from binding of protein fragments and replacement of native intracellular anions with delivered anions are considered.

摘要

基于金属层状氢氧化物和羟基氧化物的杂化及分级纳米材料在生物医学领域是一个快速发展的领域。层状双氢氧化物(LDH)具有大的比表面积、显著的表面电荷和生物相容性。它们的物理和结构特性使其能够吸附各种阴离子物种并将它们转运到细胞中。然而,需要考虑LDH与细胞间和细胞内介质阴离子相互作用可能产生的副作用,因为这种相互作用可能潜在地破坏活细胞的离子转运、信号传导过程、细胞凋亡、营养和增殖。在本文中,分子动力学被用于确定有机阴离子(天冬氨酸、谷氨酸和碳酸氢根)与层状双氢氧化物Mg/Al-LDH片段的相互作用能。确定了阴离子与氢氧化物表面之间氢键的平均数量以及特征性结合构型。考虑了LDH因蛋白质片段结合以及所递送的阴离子替代天然细胞内阴离子而对细胞可能产生的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e02/4730197/a1366ed0348c/srep19986-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验