Suppr超能文献

基于网络拓扑结构的广义逻辑模型,用于捕捉细胞信号通路的动态趋势。

Generalized logical model based on network topology to capture the dynamical trends of cellular signaling pathways.

作者信息

Zhang Fan, Chen Haoting, Zhao Li Na, Liu Hui, Przytycka Teresa M, Zheng Jie

机构信息

Biomedical Informatics Graduate Lab, School of Computer Engineering, Nanyang Technological University, Singapore 639798, Singapore.

Department of Industrial Engineering and Operations Research, Columbia University, New York, NY 10027, USA.

出版信息

BMC Syst Biol. 2016 Jan 11;10 Suppl 1(Suppl 1):7. doi: 10.1186/s12918-015-0249-9.

Abstract

BACKGROUND

Cellular responses to extracellular perturbations require signaling pathways to capture and transmit the signals. However, the underlying molecular mechanisms of signal transduction are not yet fully understood, thus detailed and comprehensive models may not be available for all the signaling pathways. In particular, insufficient knowledge of parameters, which is a long-standing hindrance for quantitative kinetic modeling necessitates the use of parameter-free methods for modeling and simulation to capture dynamic properties of signaling pathways.

RESULTS

We present a computational model that is able to simulate the graded responses to degradations, the sigmoidal biological relationships between signaling molecules and the effects of scheduled perturbations to the cells. The simulation results are validated using experimental data of protein phosphorylation, demonstrating that the proposed model is capable of capturing the main trend of protein activities during the process of signal transduction. Compared with existing simulators, our model has better performance on predicting the state transitions of signaling networks.

CONCLUSION

The proposed simulation tool provides a valuable resource for modeling cellular signaling pathways using a knowledge-based method.

摘要

背景

细胞对细胞外扰动的反应需要信号通路来捕获和传递信号。然而,信号转导的潜在分子机制尚未完全了解,因此可能无法为所有信号通路提供详细和全面的模型。特别是,参数知识不足是定量动力学建模的长期障碍,这就需要使用无参数方法进行建模和模拟,以捕捉信号通路的动态特性。

结果

我们提出了一个计算模型,该模型能够模拟对降解的分级反应、信号分子之间的S形生物学关系以及对细胞的预定扰动的影响。使用蛋白质磷酸化的实验数据对模拟结果进行了验证,表明所提出的模型能够捕捉信号转导过程中蛋白质活性的主要趋势。与现有模拟器相比,我们的模型在预测信号网络的状态转变方面具有更好的性能。

结论

所提出的模拟工具为使用基于知识的方法对细胞信号通路进行建模提供了有价值的资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3bf/4895646/f143651331de/12918_2015_249_Fig1_HTML.jpg

相似文献

1
Generalized logical model based on network topology to capture the dynamical trends of cellular signaling pathways.
BMC Syst Biol. 2016 Jan 11;10 Suppl 1(Suppl 1):7. doi: 10.1186/s12918-015-0249-9.
2
Discovering dominant pathways and signal-response relationships in signaling networks through nonparametric approaches.
Genomics. 2013 Oct;102(4):195-201. doi: 10.1016/j.ygeno.2013.07.012. Epub 2013 Aug 2.
3
Power-Law Modeling of Cancer Cell Fates Driven by Signaling Data to Reveal Drug Effects.
PLoS One. 2016 Oct 20;11(10):e0165049. doi: 10.1371/journal.pone.0165049. eCollection 2016.
5
Sig2GRN: a software tool linking signaling pathway with gene regulatory network for dynamic simulation.
BMC Syst Biol. 2016 Dec 23;10(Suppl 4):123. doi: 10.1186/s12918-016-0365-1.
7
Methodologies for the modeling and simulation of biochemical networks, illustrated for signal transduction pathways: a primer.
Biosystems. 2015 Mar;129:1-18. doi: 10.1016/j.biosystems.2015.01.008. Epub 2015 Jan 28.
8
Bayesian network approach to cell signaling pathway modeling.
Sci STKE. 2002 Sep 3;2002(148):pe38. doi: 10.1126/stke.2002.148.pe38.
9
Detailed qualitative dynamic knowledge representation using a BioNetGen model of TLR-4 signaling and preconditioning.
Math Biosci. 2009 Jan;217(1):53-63. doi: 10.1016/j.mbs.2008.08.013. Epub 2008 Sep 12.
10
Discrete dynamic modeling of cellular signaling networks.
Methods Enzymol. 2009;467:281-306. doi: 10.1016/S0076-6879(09)67011-7.

引用本文的文献

本文引用的文献

2
Computational cell fate modelling for discovery of rewiring in apoptotic network for enhanced cancer drug sensitivity.
BMC Syst Biol. 2015;9 Suppl 1(Suppl 1):S4. doi: 10.1186/1752-0509-9-S1-S4. Epub 2015 Jan 21.
3
Predicting essential genes and synthetic lethality via influence propagation in signaling pathways of cancer cell fates.
J Bioinform Comput Biol. 2015 Jun;13(3):1541002. doi: 10.1142/S0219720015410024. Epub 2015 Jan 11.
4
Mathematical modeling of GATA-switching for regulating the differentiation of hematopoietic stem cell.
BMC Syst Biol. 2014;8 Suppl 1(Suppl 1):S8. doi: 10.1186/1752-0509-8-S1-S8. Epub 2014 Jan 24.
5
Boolean network model for cancer pathways: predicting carcinogenesis and targeted therapy outcomes.
PLoS One. 2013 Jul 26;8(7):e69008. doi: 10.1371/journal.pone.0069008. Print 2013.
6
Reconstructing Boolean models of signaling.
J Comput Biol. 2013 Mar;20(3):249-57. doi: 10.1089/cmb.2012.0241. Epub 2013 Jan 3.
8
Logical modelling of gene regulatory networks with GINsim.
Methods Mol Biol. 2012;804:463-79. doi: 10.1007/978-1-61779-361-5_23.
10
Mathematical modelling of cell-fate decision in response to death receptor engagement.
PLoS Comput Biol. 2010 Mar 5;6(3):e1000702. doi: 10.1371/journal.pcbi.1000702.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验