Suppr超能文献

基于知识引导的模糊逻辑建模,从蛋白质组学数据推断细胞信号网络。

Knowledge-guided fuzzy logic modeling to infer cellular signaling networks from proteomic data.

作者信息

Liu Hui, Zhang Fan, Mishra Shital Kumar, Zhou Shuigeng, Zheng Jie

机构信息

Biomedical Informatics Lab, School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.

Lab of Information Management, Changzhou University, Jiangsu, 213164 China.

出版信息

Sci Rep. 2016 Oct 24;6:35652. doi: 10.1038/srep35652.

Abstract

Modeling of signaling pathways is crucial for understanding and predicting cellular responses to drug treatments. However, canonical signaling pathways curated from literature are seldom context-specific and thus can hardly predict cell type-specific response to external perturbations; purely data-driven methods also have drawbacks such as limited biological interpretability. Therefore, hybrid methods that can integrate prior knowledge and real data for network inference are highly desirable. In this paper, we propose a knowledge-guided fuzzy logic network model to infer signaling pathways by exploiting both prior knowledge and time-series data. In particular, the dynamic time warping algorithm is employed to measure the goodness of fit between experimental and predicted data, so that our method can model temporally-ordered experimental observations. We evaluated the proposed method on a synthetic dataset and two real phosphoproteomic datasets. The experimental results demonstrate that our model can uncover drug-induced alterations in signaling pathways in cancer cells. Compared with existing hybrid models, our method can model feedback loops so that the dynamical mechanisms of signaling networks can be uncovered from time-series data. By calibrating generic models of signaling pathways against real data, our method supports precise predictions of context-specific anticancer drug effects, which is an important step towards precision medicine.

摘要

信号通路建模对于理解和预测细胞对药物治疗的反应至关重要。然而,从文献中整理出的经典信号通路很少是特定于上下文的,因此很难预测细胞类型对外部扰动的特异性反应;纯粹的数据驱动方法也有缺点,比如生物学可解释性有限。因此,非常需要能够整合先验知识和真实数据用于网络推断的混合方法。在本文中,我们提出了一种知识引导的模糊逻辑网络模型,通过利用先验知识和时间序列数据来推断信号通路。特别地,采用动态时间规整算法来衡量实验数据和预测数据之间的拟合优度,以便我们的方法能够对按时间顺序排列的实验观察结果进行建模。我们在一个合成数据集和两个真实的磷酸化蛋白质组数据集上评估了所提出的方法。实验结果表明,我们的模型能够揭示癌细胞中药物诱导的信号通路变化。与现有的混合模型相比,我们的方法能够对反馈回路进行建模,从而可以从时间序列数据中揭示信号网络的动态机制。通过根据真实数据校准信号通路的通用模型,我们的方法支持对特定于上下文的抗癌药物效果进行精确预测,这是迈向精准医学的重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5ba/5075921/c40359f613ac/srep35652-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验