Filice Federica, Vörckel Karl Jakob, Sungur Ayse Özge, Wöhr Markus, Schwaller Beat
Anatomy, Department of Medicine, University of Fribourg, Route Albert-Gockel 1, CH-1700, Fribourg, Switzerland.
Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstraβe 18, D-35032, Marburg, Germany.
Mol Brain. 2016 Jan 27;9:10. doi: 10.1186/s13041-016-0192-8.
A reduction of the number of parvalbumin (PV)-immunoreactive (PV(+)) GABAergic interneurons or a decrease in PV immunoreactivity was reported in several mouse models of autism spectrum disorders (ASD). This includes Shank mutant mice, with SHANK being one of the most important gene families mutated in human ASD. Similar findings were obtained in heterozygous (PV+/-) mice for the Pvalb gene, which display a robust ASD-like phenotype. Here, we addressed the question whether the observed reduction in PV immunoreactivity was the result of a decrease in PV expression levels and/or loss of the PV-expressing GABA interneuron subpopulation hereafter called "Pvalb neurons". The two alternatives have important implications as they likely result in opposing effects on the excitation/inhibition balance, with decreased PV expression resulting in enhanced inhibition, but loss of the Pvalb neuron subpopulation in reduced inhibition.
Stereology was used to determine the number of Pvalb neurons in ASD-associated brain regions including the medial prefrontal cortex, somatosensory cortex and striatum of PV-/-, PV+/-, Shank1-/- and Shank3B-/- mice. As a second marker for the identification of Pvalb neurons, we used Vicia Villosa Agglutinin (VVA), a lectin recognizing the specific extracellular matrix enwrapping Pvalb neurons. PV protein and Pvalb mRNA levels were determined quantitatively by Western blot analyses and qRT-PCR, respectively.
Our analyses of total cell numbers in different brain regions indicated that the observed "reduction of PV(+) neurons" was in all cases, i.e., in PV+/-, Shank1-/- and Shank3B-/- mice, due to a reduction in Pvalb mRNA and PV protein, without any indication of neuronal cell decrease/loss of Pvalb neurons evidenced by the unaltered numbers of VVA(+) neurons.
Our findings suggest that the PV system might represent a convergent downstream endpoint for some forms of ASD, with the excitation/inhibition balance shifted towards enhanced inhibition due to the down-regulation of PV being a promising target for future pharmacological interventions. Testing whether approaches aimed at restoring normal PV protein expression levels and/or Pvalb neuron function might reverse ASD-relevant phenotypes in mice appears therefore warranted and may pave the way for novel therapeutic treatment strategies.
在几种自闭症谱系障碍(ASD)小鼠模型中,已报道小清蛋白(PV)免疫反应阳性(PV(+))的γ-氨基丁酸能中间神经元数量减少或PV免疫反应性降低。这包括Shank突变小鼠,SHANK是人类ASD中突变的最重要基因家族之一。在Pvalb基因的杂合子(PV+/-)小鼠中也获得了类似的发现,这些小鼠表现出强烈的ASD样表型。在此,我们探讨了观察到的PV免疫反应性降低是PV表达水平降低和/或表达PV的γ-氨基丁酸中间神经元亚群(以下称为“Pvalb神经元”)丢失的结果这一问题。这两种情况具有重要意义,因为它们可能对兴奋/抑制平衡产生相反的影响,PV表达降低导致抑制增强,而Pvalb神经元亚群的丢失则导致抑制减弱。
运用体视学方法确定ASD相关脑区(包括内侧前额叶皮质、躯体感觉皮质和纹状体)中PV-/-、PV+/ -、Shank1-/-和Shank3B-/-小鼠的Pvalb神经元数量。作为识别Pvalb神经元的第二个标志物,我们使用了野豌豆凝集素(VVA),一种识别包裹Pvalb神经元的特定细胞外基质的凝集素。分别通过蛋白质免疫印迹分析和qRT-PCR定量测定PV蛋白和Pvalb mRNA水平。
我们对不同脑区总细胞数的分析表明,在所有情况下,即在PV+/-、Shank1-/-和Shank3B-/-小鼠中观察到的“PV(+)神经元减少”是由于Pvalb mRNA和PV蛋白减少,而VVA(+)神经元数量未改变,没有任何证据表明Pvalb神经元的神经元细胞减少/丢失。
我们的研究结果表明,PV系统可能是某些形式ASD的一个汇聚下游终点,由于PV下调导致兴奋/抑制平衡向增强抑制方向转变,这是未来药物干预的一个有希望的靶点。因此,测试旨在恢复正常PV蛋白表达水平和/或Pvalb神经元功能的方法是否可能逆转小鼠中与ASD相关的表型似乎是必要的,这可能为新的治疗策略铺平道路。