Anatomy, Section of Medicine, University of Fribourg, Route Albert-Gockel 1, 1700, Fribourg, Switzerland.
Mol Autism. 2020 Jun 9;11(1):47. doi: 10.1186/s13229-020-00323-8.
In fast firing, parvalbumin (PV)-expressing (Pvalb) interneurons, PV acts as an intracellular Ca signal modulator with slow-onset kinetics. In Purkinje cells of PV mice, adaptive/homeostatic mechanisms lead to an increase in mitochondria, organelles equally capable of delayed Ca sequestering/buffering. An inverse regulation of PV and mitochondria likewise operates in cell model systems in vitro including myotubes, epithelial cells, and oligodendrocyte-like cells overexpressing PV. Whether such opposite regulation pertains to all Pvalb neurons is currently unknown. In oligodendrocyte-like cells, PV additionally decreases growth and branching of processes in a cell-autonomous manner.
The in vivo effects of absence of PV were investigated in inhibitory Pvalb neurons expressing EGFP, present in the somatosensory and medial prefrontal cortex, striatum, thalamic reticular nucleus, hippocampal regions DG, CA3, and CA1 and cerebellum of mice either wild-type or knockout (PV) for the Pvalb gene. Changes in Pvalb neuron morphology and PV concentrations were determined using immunofluorescence, followed by 3D-reconstruction and quantitative image analyses.
PV deficiency led to an increase in mitochondria volume and density in the soma; the magnitude of the effect was positively correlated with the estimated PV concentrations in the various Pvalb neuron subpopulations in wild-type neurons. The increase in dendrite length and branching, as well as thickness of proximal dendrites of selected PV Pvalb neurons is likely the result of the observed increased density and length of mitochondria in these PV Pvalb neuron dendrites. The increased branching and soma size directly linked to the absence of PV is assumed to contribute to the increased volume of the neocortex present in juvenile PV mice. The extended dendritic branching is in line with the hypothesis of local hyperconnectivity in autism spectrum disorder (ASD) and ASD mouse models including PV mice, which display all ASD core symptoms and several comorbidities including cortical macrocephaly at juvenile age.
PV is involved in most proposed mechanisms implicated in ASD etiology: alterations in Ca signaling affecting E/I balance, changes in mitochondria structure/function, and increased dendritic length and branching, possibly resulting in local hyperconnectivity, all in a likely cell autonomous way.
在快速放电中,表达 parvalbumin(PV)的中间神经元中,PV 作为一种具有缓慢起始动力学的细胞内 Ca 信号调节剂。在 PV 小鼠的浦肯野细胞中,适应性/动态平衡机制导致线粒体增加,而线粒体同样能够延迟 Ca 摄取/缓冲。在细胞模型系统中,PV 和线粒体的反向调节也同样存在于包括肌管、上皮细胞和过表达 PV 的少突胶质样细胞在内的体外,在过表达 PV 的少突胶质样细胞中,PV 还以细胞自主的方式减少过程的生长和分支。
在表达 EGFP 的抑制性 Pvalb 神经元中,研究了体内缺乏 PV 的影响,这些神经元存在于感觉躯体和内侧前额叶皮层、纹状体、丘脑网状核、海马区 DG、CA3 和 CA1 以及小鼠的小脑,这些神经元为野生型或敲除(PV)Pvalb 基因。使用免疫荧光法测定 Pvalb 神经元形态和 PV 浓度的变化,然后进行 3D 重建和定量图像分析。
PV 缺乏导致胞体中线粒体体积和密度增加;这种效应的大小与野生型神经元中各种 Pvalb 神经元亚群中估计的 PV 浓度呈正相关。选定的 PV Pvalb 神经元的树突长度和分支以及近端树突的厚度增加,可能是由于观察到这些 PV Pvalb 神经元树突中线粒体密度和长度增加所致。与 PV 缺乏直接相关的分支和胞体增大,被认为有助于幼年 PV 小鼠大脑皮层体积的增加。扩展的树突分支与自闭症谱系障碍(ASD)和 ASD 小鼠模型中的局部过度连接假说一致,包括 PV 小鼠,它们表现出所有 ASD 核心症状和几种合并症,包括青少年时期的大脑皮层大头畸形。
PV 参与了大多数与 ASD 病因学相关的拟议机制:改变 Ca 信号影响 E/I 平衡、改变线粒体结构/功能以及增加树突长度和分支,可能导致局部过度连接,所有这些都可能以细胞自主的方式发生。