Hesse Linnea, Wagner Sarah T, Neinhuis Christoph
Institut für Botanik, Technische Universität Dresden, D-01062 Dresden, Germany Institut für Spezielle Botanik, Johannes Gutenberg-Universität Mainz, D-55112 Mainz, Germany Present address: Plant Biomechanics Group Freiburg, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg im Breisgau, Germany
Institut für Botanik, Technische Universität Dresden, D-01062 Dresden, Germany.
AoB Plants. 2016 Jan 27;8:plw005. doi: 10.1093/aobpla/plw005.
Plants with a climbing growth habit possess unique biomechanical properties arising from adaptations to changing loading conditions connected with close attachment to mechanical supports. In monocot climbers, mechanical adaptation is restricted by the absence of a bifacial vascular cambium. Flagellaria indica was used to investigate the mechanical properties and adaptations of a monocot climber that, uniquely, attaches to the surrounding vegetation via leaf tendrils. Biomechanical methods such as three-point bending and torsion tests were used together with anatomical studies on tissue development, modification and distribution. In general, the torsional modulus was lower than the bending modulus; hence, torsional stiffness was less than flexural stiffness. Basal parts of mature stems showed the greatest stiffness while that of more apical stem segments levelled off. Mechanical properties were modulated via tissue maturation processes mainly affecting the peripheral region of the stem. Peripheral vascular bundles showed a reduction in the amount of conducting tissue while the proportion and density of the bundle sheath increased. Furthermore, adjacent bundle sheaths merged resulting in a dense ring of fibrous tissue. Although F. indica lacks secondary cambial growth, the climbing habit is facilitated by a complex interaction of tissue maturation and attachment.
具有攀缘生长习性的植物具有独特的生物力学特性,这些特性源于它们适应与紧密附着于机械支撑物相关的不断变化的负载条件。在单子叶攀缘植物中,由于缺乏双面维管束形成层,机械适应受到限制。印度鞭藤被用于研究一种单子叶攀缘植物的机械特性和适应性,这种植物独特之处在于通过叶卷须附着于周围植被。采用了三点弯曲和扭转试验等生物力学方法,并结合了对组织发育、修饰和分布的解剖学研究。总体而言,扭转模量低于弯曲模量;因此,扭转刚度小于弯曲刚度。成熟茎的基部表现出最大的刚度,而较顶端的茎段刚度趋于平稳。机械特性通过主要影响茎外周区域的组织成熟过程进行调节。外周维管束中传导组织的数量减少,而维管束鞘的比例和密度增加。此外,相邻的维管束鞘融合,形成一圈致密的纤维组织。尽管印度鞭藤缺乏次生形成层生长,但组织成熟和附着的复杂相互作用促进了其攀缘习性。