Suppr超能文献

Transcriptomic study of high‑glucose effects on human skin fibroblast cells.

作者信息

Pang Lingxia, Wang Youpei, Zheng Meiqin, Wang Qing, Lin Hong, Zhang Liqing, Wu Lingjian

机构信息

Function Experiment Teaching Center, Wenzhou Medical University, Wenzhou, Zhejiang 325305, P.R. China.

Clinical Examination Center, The Affiliated Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China.

出版信息

Mol Med Rep. 2016 Mar;13(3):2627-34. doi: 10.3892/mmr.2016.4822. Epub 2016 Jan 28.

Abstract

Skin ulcers are a common complication of diabetes mellitus (DM). Fibroblasts are located within the dermis of skin tissue and can be damaged by diabetes. However, the underlying mechanism of how DM affects fibroblasts remains elusive. To understand the effects of DM on fibroblasts, the current study mimicked DM by high‑glucose (HG) supplementation in the culture medium of human foreskin primary fibroblast cells, and the analysis of transcriptomic changes was conducted. RNA sequencing‑based transcriptome analysis identified that, upon HG stress, 463 genes were upregulated and 351 genes downregulated (>1.5‑fold changes; P<0.05). These altered genes were distributed into 20 different pathways. In addition, gene ontology (GO) analysis indicated that 31 GO terms were enriched. Among the pathways identified, nuclear factor κB (NF‑κB) pathway genes were highly expressed, and the addition of Bay11‑7082, a typical NF‑κB signaling inhibitor, blocked the previously observed alterations in plasminogen activator inhibitor 1 (PAI1), an inflammation marker and frizzled class receptor 8 (FZD8), a Wnt signaling gene, expression that resulted from HG stress. Furthermore, an inhibitor of Wnt signaling diminished the role of Bay11‑7082 in the regulation of PAI1 expression under HG conditions, suggesting that Wnt signaling may function downstream of the NF‑κB pathway to protect fibroblast cells from HG stress. To the best of our knowledge, the current study is the first analysis of transcriptomic responses under HG stress in human fibroblasts. The data provided here may aid the understanding of the molecular mechanisms by which fibroblast cells are damaged in the skin of patients with DM.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验