Suppr超能文献

暴露于两种不同的致焦虑应激源后,大鼠中央杏仁核和终纹床核中含促肾上腺皮质激素释放因子的神经元被激活。

Activation of corticotropin releasing factor-containing neurons in the rat central amygdala and bed nucleus of the stria terminalis following exposure to two different anxiogenic stressors.

作者信息

Butler Ryan K, Oliver Elisabeth M, Sharko Amanda C, Parilla-Carrero Jeffrey, Kaigler Kris F, Fadel Jim R, Wilson Marlene A

机构信息

Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.

Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.

出版信息

Behav Brain Res. 2016 May 1;304:92-101. doi: 10.1016/j.bbr.2016.01.051. Epub 2016 Jan 25.

Abstract

Rats exposed to the odor of a predator or to the elevated plus maze (EPM) express unique unconditioned fear behaviors. The extended amygdala has previously been demonstrated to mediate the response to both predator odor and the EPM. We seek to determine if divergent amygdalar microcircuits are associated with the different behavioral responses. The current experiments compared activation of corticotropin-releasing factor (CRF)-containing neuronal populations in the central amygdala and bed nucleus of the stria terminalis (BNST) of rats exposed to either the EPM (5 min) versus home cage controls, or predator (ferret) odor versus butyric acid, or no odor (30 min). Sections of the brains were prepared for dual-labeled immunohistochemistry and counts of c-Fos co-localized with CRF were made in the centrolateral and centromedial amygdala (CLA and CMA) as well as the dorsolateral (dl), dorsomedial (dm), and ventral (v) BNST. Ferret odor-exposed rats displayed an increase in duration and a decrease in latency of defensive burying versus control rats. Exposure to both predator stress and EPM induced neuronal activation in the BNST, but not the central amygdala, and similar levels of neuronal activation were seen in both the high and low anxiety groups in the BNST after EPM exposure. Dual-labeled immunohistochemistry showed a significant increase in the percentage of CRF/c-Fos co-localization in the vBNST of ferret odor-exposed rats compared to control and butyric acid-exposed groups as well as EPM-exposed rats compared to home cage controls. In addition, an increase in the percentage of CRF-containing neurons co-localized with c-Fos was observed in the dmBNST after EPM exposure. No changes in co-localization of CRF with c-Fos was observed with these treatments in either the CLA or CMA. These results suggest that predator odor and EPM exposure activates CRF neurons in the BNST to a much greater extent than CRF neurons of the central amygdala, and indicates unconditioned anxiogenic stimuli may activate unique anatomical circuits in the extended amygdala.

摘要

暴露于捕食者气味或高架十字迷宫(EPM)中的大鼠会表现出独特的无条件恐惧行为。先前已证明,扩展杏仁核可介导对捕食者气味和EPM的反应。我们试图确定不同的杏仁核微回路是否与不同的行为反应相关。当前的实验比较了暴露于EPM(5分钟)与笼内对照的大鼠、暴露于捕食者(雪貂)气味与丁酸气味或无气味(30分钟)的大鼠,其中央杏仁核和终纹床核(BNST)中含促肾上腺皮质激素释放因子(CRF)的神经元群体的激活情况。制备大脑切片用于双重标记免疫组织化学,并在中央外侧和中央内侧杏仁核(CLA和CMA)以及背外侧(dl)、背内侧(dm)和腹侧(v)BNST中对与CRF共定位的c-Fos进行计数。与对照大鼠相比,暴露于雪貂气味的大鼠防御性埋存的持续时间增加,潜伏期缩短。暴露于捕食者应激和EPM均会诱导BNST而非中央杏仁核中的神经元激活,并且在EPM暴露后,高焦虑组和低焦虑组的BNST中观察到相似水平的神经元激活。双重标记免疫组织化学显示,与对照和丁酸暴露组相比,暴露于雪貂气味的大鼠的vBNST中CRF/c-Fos共定位的百分比显著增加,与笼内对照相比,暴露于EPM的大鼠也是如此。此外,EPM暴露后,dmBNST中与c-Fos共定位的含CRF神经元的百分比增加。在CLA或CMA中,这些处理均未观察到CRF与c-Fos共定位的变化。这些结果表明,捕食者气味和EPM暴露比中央杏仁核的CRF神经元更能激活BNST中的CRF神经元,这表明无条件焦虑性刺激可能激活扩展杏仁核中的独特解剖回路。

相似文献

3
Activation of phenotypically-distinct neuronal subpopulations of the rat amygdala following exposure to predator odor.
Neuroscience. 2011 Feb 23;175:133-44. doi: 10.1016/j.neuroscience.2010.12.001. Epub 2010 Dec 10.
9
Anxiety-like responses induced by nitric oxide within the BNST in mice: Role of CRF1 and NMDA receptors.
Horm Behav. 2016 Mar;79:74-83. doi: 10.1016/j.yhbeh.2016.01.002. Epub 2016 Jan 13.

引用本文的文献

1
Behavioral and neurobiological implications of kairomones for rodents: an updated review.
Front Neurosci. 2025 Feb 19;19:1485312. doi: 10.3389/fnins.2025.1485312. eCollection 2025.
3
Single cocaine exposure attenuates the intrinsic excitability of CRH neurons in the ventral BNST via Sigma-1 receptors.
Transl Neurosci. 2024 Apr 24;15(1):20220339. doi: 10.1515/tnsci-2022-0339. eCollection 2024 Jan 1.
4
Butterflies in the gut: the interplay between intestinal microbiota and stress.
J Biomed Sci. 2023 Nov 28;30(1):92. doi: 10.1186/s12929-023-00984-6.
5
Toggling between food-seeking and self-preservation behaviors via hypothalamic response networks.
Neuron. 2023 Sep 20;111(18):2899-2917.e6. doi: 10.1016/j.neuron.2023.06.006. Epub 2023 Jul 12.
9
Central amygdala corticotropin-releasing factor neurons promote hyponeophagia but do not control alcohol drinking in mice.
Mol Psychiatry. 2022 May;27(5):2502-2513. doi: 10.1038/s41380-022-01496-9. Epub 2022 Mar 9.
10
FKBP51 in the Oval Bed Nucleus of the Stria Terminalis Regulates Anxiety-Like Behavior.
eNeuro. 2021 Dec 17;8(6). doi: 10.1523/ENEURO.0425-21.2021. Print 2021 Nov-Dec.

本文引用的文献

1
The smell of fear: innate threat of 2,5-dihydro-2,4,5-trimethylthiazoline, a single molecule component of a predator odor.
Front Neurosci. 2015 Aug 25;9:292. doi: 10.3389/fnins.2015.00292. eCollection 2015.
2
Neuroanatomical and functional characterization of CRF neurons of the amygdala using a novel transgenic mouse model.
Neuroscience. 2015 Mar 19;289:153-65. doi: 10.1016/j.neuroscience.2015.01.006. Epub 2015 Jan 13.
3
Encoding of fear learning and memory in distributed neuronal circuits.
Nat Neurosci. 2014 Dec;17(12):1644-54. doi: 10.1038/nn.3869. Epub 2014 Nov 21.
6
Deep brain stimulation affects conditioned and unconditioned anxiety in different brain areas.
Transl Psychiatry. 2013 Jul 30;3(7):e289. doi: 10.1038/tp.2013.56.
7
Optogenetic strategies to investigate neural circuitry engaged by stress.
Behav Brain Res. 2013 Oct 15;255:19-25. doi: 10.1016/j.bbr.2013.05.007. Epub 2013 May 16.
8
9
Distinct extended amygdala circuits for divergent motivational states.
Nature. 2013 Apr 11;496(7444):224-8. doi: 10.1038/nature12041. Epub 2013 Mar 20.
10
Anxiogenic effects of CGRP within the BNST may be mediated by CRF acting at BNST CRFR1 receptors.
Behav Brain Res. 2013 Apr 15;243:286-93. doi: 10.1016/j.bbr.2013.01.024. Epub 2013 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验