Mojica Luis, de Mejía Elvira González
Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, IL 61801, USA.
Food Funct. 2016 Feb;7(2):713-27. doi: 10.1039/c5fo01204j.
The aim was to optimize the production of bioactive peptides from black bean (Phaseolus vulgaris L.) protein isolate and to determine their biological potential using biochemical and in silico approaches. Protein fractions were generated using eight commercially available proteases after 2, 3 and 4 h and 1:20, 1:30 and 1:50 enzyme/substrate (E/S) ratios. The best combination of conditions to generate anti-diabetic peptides was with alcalase for 2 h and E/S of 1:20; with inhibition values for dipeptidyl peptidase IV (DPP-IV, 96.7%), α-amylase (53.4%) and α-glucosidase (66.1%). Generated peptides were characterized using LC-ESI-MS/MS. Molecular docking analysis was performed to predict individual peptide biological potential using DockingServer®. Peptides EGLELLLLLLAG, AKSPLF and FEELN inhibited DPP-IV more efficiently in silico through free energy interactions of -9.8, -9.6 and -9.5 kcal mol(-1), respectively, than the control sitagliptin (-8.67 kcal mol(-1)). The peptide TTGGKGGK (-8.97 kcal mol(-1)) had higher inhibitory potential on α-glucosidase compared to the control acarbose (-8.79 kcal mol(-1)). Peptides AKSPLF (-10.2 kcal mol(-1)) and WEVM (-10.1 kcal mol(-1)) generated a lower free energy interaction with the catalytic site of α-amylase in comparison with acarbose (-9.71 kcal mol(-1)). Bean peptides inhibited the tested enzymes through hydrogen bonds, polar and hydrophobic interactions. The main bindings on the catalytic site were with ASP192, GLU192 and ARG 253 on DPP-IV; TYR151, HIS201 and ILE235 on α-amylase; and ASP34, THR83 and ASN32 on α-glucosidase. For the first time, a systematic evaluation and characterization of the anti-diabetic peptides from black bean protein isolate is presented with the potential for inhibiting important molecular markers related to diabetes.
目的是优化从黑豆(菜豆)分离蛋白中生产生物活性肽,并使用生化和计算机模拟方法确定其生物活性。使用8种市售蛋白酶在2、3和4小时后以及1:20、1:30和1:50的酶/底物(E/S)比例下生成蛋白质组分。生成抗糖尿病肽的最佳条件组合是使用碱性蛋白酶2小时,E/S为1:20;对二肽基肽酶IV(DPP-IV,96.7%)、α-淀粉酶(53.4%)和α-葡萄糖苷酶(66.1%)具有抑制活性。使用LC-ESI-MS/MS对生成的肽进行表征。使用DockingServer®进行分子对接分析以预测单个肽的生物活性。肽EGLELLLLLLAG、AKSPLF和FEELN在计算机模拟中通过分别为-9.8、-9.6和-9.5 kcal mol(-1)的自由能相互作用比对照西他列汀(-8.67 kcal mol(-1))更有效地抑制DPP-IV。与对照阿卡波糖(-8.79 kcal mol(-1))相比,肽TTGGKGGK(-8.97 kcal mol(-1))对α-葡萄糖苷酶具有更高的抑制活性。与阿卡波糖(-9.71 kcal mol(-1))相比,肽AKSPLF(-10.2 kcal mol(-1))和WEVM(-10.1 kcal mol(-1))与α-淀粉酶催化位点的自由能相互作用更低。黑豆肽通过氢键、极性和疏水相互作用抑制测试的酶。在催化位点上的主要结合是与DPP-IV上的ASP192、GLU192和ARG 253;α-淀粉酶上的TYR151、HIS201和ILE235;以及α-葡萄糖苷酶上的ASP34、THR83和ASN32。首次对黑豆分离蛋白中的抗糖尿病肽进行了系统评估和表征,其具有抑制与糖尿病相关的重要分子标志物的潜力。