Khademolhosseini F, Liu C-C, Lim C J, Chiao M
The University of British Columbia, Vancouver, Canada.
Child and Family Research Institute, Vancouver, Canada.
Biomed Microdevices. 2016 Feb;18(1):13. doi: 10.1007/s10544-016-0033-7.
We present a study on the application of magnetically actuated polymer micropillar surfaces in modifying the migration behaviour of cells. We show that micropillar surfaces actuated at a frequency of 1 Hz can cause more than a 5-fold decrease in cell migration rates compared to controls, whereas non-actuated micropillar surfaces cause no statistically significant alterations in cell migration rates. The effectiveness of the micropillar arrays in impeding cell migration depends on micropillar density and placement patterns, as well as the direction of micropillar actuation with respect to the direction of cell migration. Since the magnetic micropillar surfaces presented can be actuated remotely with small external magnetic fields, their integration with implants could provide new possibilities for in-vivo tissue engineering applications.
我们展示了一项关于磁驱动聚合物微柱表面在改变细胞迁移行为方面应用的研究。我们表明,与对照组相比,以1赫兹频率驱动的微柱表面可使细胞迁移速率降低超过5倍,而未驱动的微柱表面在细胞迁移速率方面未引起统计学上的显著变化。微柱阵列在阻碍细胞迁移方面的有效性取决于微柱密度和排列模式,以及微柱驱动方向相对于细胞迁移方向的关系。由于所展示的磁性微柱表面可以通过小的外部磁场进行远程驱动,它们与植入物的整合可为体内组织工程应用提供新的可能性。