Kiang Tony K L, Ensom Mary H H
The University of British Columbia, Vancouver, BC, Canada Vancouver General Hospital, Vancouver, BC, Canada.
The University of British Columbia, Vancouver, BC, Canada Children's and Women's Health Centre of British Columbia, Vancouver, BC, Canada
Ann Pharmacother. 2016 Apr;50(4):311-25. doi: 10.1177/1060028016628166. Epub 2016 Jan 29.
In settings where free phenytoin concentrations are not available, the Sheiner-Tozer equation-Corrected total phenytoin concentration = Observed total phenytoin concentration/[(0.2 × Albumin) + 0.1]; phenytoin in µg/mL, albumin in g/dL-and its derivative equations are commonly used to correct for altered phenytoin binding to albumin. The objective of this article was to provide a comprehensive and updated review on the predictive performance of these equations in various patient populations.
A literature search of PubMed, EMBASE, and Google Scholar was conducted using combinations of the following terms: Sheiner-Tozer, Winter-Tozer, phenytoin, predictive equation, precision, bias, free fraction.
All English-language articles up to November 2015 (excluding abstracts) were evaluated.
This review shows the Sheiner-Tozer equation to be biased and imprecise in various critical care, head trauma, and general neurology patient populations. Factors contributing to bias and imprecision include the following: albumin concentration, free phenytoin assay temperature, experimental conditions (eg, timing of concentration sampling, steady-state dosing conditions), renal function, age, concomitant medications, and patient type. Although derivative equations using varying albumin coefficients have improved accuracy (without much improvement in precision) in intensive care and elderly patients, these equations still require further validation.
Further experiments are also needed to yield derivative equations with good predictive performance in all populations as well as to validate the equations' impact on actual patient efficacy and toxicity outcomes. More complex, multivariate predictive equations may be required to capture all variables that can potentially affect phenytoin pharmacokinetics and clinical therapeutic outcomes.
在无法获得游离苯妥英浓度的情况下,常用谢纳 - 托泽方程(校正后的总苯妥英浓度 = 观察到的总苯妥英浓度 / [(0.2 × 白蛋白) + 0.1];苯妥英单位为μg/mL,白蛋白单位为g/dL)及其衍生方程来校正苯妥英与白蛋白结合的改变。本文的目的是对这些方程在不同患者群体中的预测性能进行全面且最新的综述。
使用以下术语组合在PubMed、EMBASE和谷歌学术上进行文献检索:谢纳 - 托泽、温特 - 托泽、苯妥英、预测方程、精密度、偏倚、游离分数。
评估截至2015年11月的所有英文文章(不包括摘要)。
本综述表明,谢纳 - 托泽方程在各种重症监护、头部创伤和普通神经科患者群体中存在偏倚且不精确。导致偏倚和不精确的因素包括:白蛋白浓度、游离苯妥英测定温度、实验条件(如浓度采样时间、稳态给药条件)、肾功能、年龄、合并用药及患者类型。尽管使用不同白蛋白系数的衍生方程在重症监护患者和老年患者中提高了准确性(精密度提高不多),但这些方程仍需进一步验证。
还需要进一步实验以得出在所有人群中具有良好预测性能的衍生方程,并验证这些方程对实际患者疗效和毒性结果的影响。可能需要更复杂的多变量预测方程来捕捉所有可能影响苯妥英药代动力学和临床治疗结果的变量。