1 Division of Infectious Diseases, The Children's Hospital of Philadelphia, Philadelphia, USA ; 2 Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA ; 3 Children's Cancer Institute Australia, Sydney, Australia ; 4 Lankenau Institute for Medical Research, Wynnewood, USA ; 5 Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, USA.
Transl Pediatr. 2015 Jul;4(3):226-38. doi: 10.3978/j.issn.2224-4336.2015.04.06.
Neuroblastoma is a childhood tumor in which MYC oncogenes are commonly activated to drive tumor progression. Survival for children with high-risk neuroblastoma remains poor despite treatment that incorporates high-dose chemotherapy, stem cell support, surgery, radiation therapy and immunotherapy. More effective and less toxic treatments are sought and one approach under clinical development involves re-purposing the anti-protozoan drug difluoromethylornithine (DFMO; Eflornithine) as a neuroblastoma therapeutic. DFMO is an irreversible inhibitor of ornithine decarboxylase (Odc), a MYC target gene, bona fide oncogene, and the rate-limiting enzyme in polyamine synthesis. DFMO is approved for the treatment of Trypanosoma brucei gambiense encephalitis ("African sleeping sickness") since polyamines are essential for the proliferation of these protozoa. However, polyamines are also critical for mammalian cell proliferation and the finding that MYC coordinately regulates all aspects of polyamine metabolism suggests polyamines may be required to support cancer promotion by MYC. Pre-emptive blockade of polyamine synthesis is sufficient to block tumor initiation in an otherwise fully penetrant transgenic mouse model of neuroblastoma driven by MYCN, underscoring the necessity of polyamines in this process. Moreover, polyamine depletion regimens exert potent anti-tumor activity in pre-clinical models of established neuroblastoma as well, in combination with numerous chemotherapeutic agents and even in tumors with unfavorable genetic features such as MYCN, ALK or TP53 mutation. This has led to the testing of DFMO in clinical trials for children with neuroblastoma. Current trial designs include testing lower dose DFMO alone (2,000 mg/m(2)/day) starting at the completion of standard therapy, or higher doses combined with chemotherapy (up to 9,000 mg/m(2)/day) for patients with relapsed disease that has progressed. In this review we will discuss important considerations for the future design of DFMO-based clinical trials for neuroblastoma, focusing on the need to better define the principal mechanisms of anti-tumor activity for polyamine depletion regimens. Putative DFMO activities that are both cancer cell intrinsic (targeting the principal oncogenic driver, MYC) and cancer cell extrinsic (altering the tumor microenvironment to support anti-tumor immunity) will be discussed. Understanding the mechanisms of DFMO activity are critical in determining how it might be best leveraged in upcoming clinical trials. This mechanistic approach also provides a platform by which iterative pre-clinical testing using translational tumor models may complement our clinical approaches.
神经母细胞瘤是一种儿童肿瘤,其中 MYC 癌基因通常被激活以驱动肿瘤进展。尽管采用了包括大剂量化疗、干细胞支持、手术、放射治疗和免疫治疗在内的治疗方法,但患有高危神经母细胞瘤的儿童的存活率仍然很差。正在寻求更有效和毒性更小的治疗方法,一种正在临床开发中的方法是重新利用抗原生动物药物二氟甲基鸟氨酸 (DFMO; 依氟鸟氨酸) 作为神经母细胞瘤治疗药物。DFMO 是鸟氨酸脱羧酶 (Odc) 的不可逆抑制剂,Odc 是 MYC 的靶基因、真正的癌基因和多胺合成的限速酶。DFMO 已获批准用于治疗布氏冈比亚锥虫脑型(“非洲昏睡病”),因为多胺对这些原生动物的增殖至关重要。然而,多胺对哺乳动物细胞的增殖也至关重要,并且 MYC 协调调节多胺代谢的各个方面的发现表明,多胺可能需要支持 MYC 促进癌症。在 MYCN 驱动的神经母细胞瘤的完全穿透性转基因小鼠模型中,预先阻断多胺合成足以阻止肿瘤起始,这突显了该过程中多胺的必要性。此外,多胺耗竭方案在已建立的神经母细胞瘤的临床前模型中也具有强大的抗肿瘤活性,与许多化疗药物联合使用,甚至在具有不利遗传特征(如 MYCN、ALK 或 TP53 突变)的肿瘤中也是如此。这导致了 DFMO 在神经母细胞瘤儿童临床试验中的测试。目前的试验设计包括单独测试较低剂量的 DFMO(完成标准治疗后每天 2,000mg/m²),或对已进展的复发性疾病患者联合化疗(每天高达 9,000mg/m²)测试更高剂量。在这篇综述中,我们将讨论未来基于 DFMO 的神经母细胞瘤临床试验设计的重要考虑因素,重点是需要更好地定义多胺耗竭方案的抗肿瘤活性的主要机制。将讨论 DFMO 的推定活性,包括针对主要致癌驱动因素 MYC 的肿瘤细胞内在活性(靶向主要致癌驱动因素,MYC)和改变肿瘤微环境以支持抗肿瘤免疫的肿瘤细胞外在活性。了解 DFMO 活性的机制对于确定如何在即将到来的临床试验中最好地利用它至关重要。这种机制方法还提供了一个平台,通过该平台可以使用转化肿瘤模型进行迭代临床前测试,以补充我们的临床方法。
Clin Cancer Res. 2016-3-24
J Biol Chem. 2018-11-7
J Exp Clin Cancer Res. 2025-2-17
J Cancer Metastasis Treat. 2023
J Clin Invest. 2024-1-16
Cell Commun Signal. 2023-12-4
EMBO Mol Med. 2023-11-8
Proc Natl Acad Sci U S A. 2023-6-13
Cancer Immunol Res. 2013-10-7
Oncoimmunology. 2014-1-1
Pediatr Hematol Oncol. 2014-11
Cell Death Dis. 2014-3-20
Nat Immunol. 2013-10
Cancer Res. 2013-9-12