Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. Center for Childhood Cancer Research, University of New South Wales, Sydney, Australia.
Children's Cancer Institute Australia, Sydney, Australia.
Clin Cancer Res. 2016 Sep 1;22(17):4391-404. doi: 10.1158/1078-0432.CCR-15-2539. Epub 2016 Mar 24.
Deregulated MYC drives oncogenesis in many tissues yet direct pharmacologic inhibition has proven difficult. MYC coordinately regulates polyamine homeostasis as these essential cations support MYC functions, and drugs that antagonize polyamine sufficiency have synthetic-lethal interactions with MYC Neuroblastoma is a lethal tumor in which the MYC homologue MYCN, and ODC1, the rate-limiting enzyme in polyamine synthesis, are frequently deregulated so we tested optimized polyamine depletion regimens for activity against neuroblastoma.
We used complementary transgenic and xenograft-bearing neuroblastoma models to assess polyamine antagonists. We investigated difluoromethylornithine (DFMO; an inhibitor of Odc, the rate-limiting enzyme in polyamine synthesis), SAM486 (an inhibitor of Amd1, the second rate-limiting enzyme), and celecoxib (an inducer of Sat1 and polyamine catabolism) in both the preemptive setting and in the treatment of established tumors. In vitro assays were performed to identify mechanisms of activity.
An optimized polyamine antagonist regimen using DFMO and SAM486 to inhibit both rate-limiting enzymes in polyamine synthesis potently blocked neuroblastoma initiation in transgenic mice, underscoring the requirement for polyamines in MYC-driven oncogenesis. Furthermore, the combination of DFMO with celecoxib was found to be highly active, alone, and combined with numerous chemotherapy regimens, in regressing established tumors in both models, including tumors harboring highest risk genetic lesions such as MYCN amplification, ALK mutation, and TP53 mutation with multidrug resistance.
Given the broad preclinical activity demonstrated by polyamine antagonist regimens across diverse in vivo models, clinical investigation of such approaches in neuroblastoma and potentially other MYC-driven tumors is warranted. Clin Cancer Res; 22(17); 4391-404. ©2016 AACR.
MYC 的失调驱动许多组织的肿瘤发生,但直接的药理抑制已被证明很困难。MYC 协调调节多胺稳态,因为这些必需的阳离子支持 MYC 的功能,并且拮抗多胺充足的药物与 MYC 具有合成致死性相互作用。神经母细胞瘤是一种致命的肿瘤,其中 MYC 同源物 MYCN 和多胺合成的限速酶 ODC1 经常失调,因此我们测试了针对神经母细胞瘤的优化多胺耗竭方案的活性。
我们使用互补的转基因和异种移植神经母细胞瘤模型来评估多胺拮抗剂。我们研究了二氟甲基鸟氨酸(DFMO;多胺合成的限速酶 Odc 的抑制剂)、SAM486(多胺合成的第二个限速酶 Amd1 的抑制剂)和塞来昔布(Sat1 和多胺分解代谢的诱导剂)在预防和治疗已建立的肿瘤中的作用。进行了体外测定以确定活性机制。
使用 DFMO 和 SAM486 抑制多胺合成的两个限速酶的优化多胺拮抗剂方案,强烈阻止了转基因小鼠中神经母细胞瘤的起始,强调了多胺在 MYC 驱动的肿瘤发生中的必要性。此外,发现 DFMO 与塞来昔布联合使用具有高度活性,无论是单独使用还是与多种化疗方案联合使用,都能使两种模型中的已建立肿瘤消退,包括携带最高风险遗传病变的肿瘤,如 MYCN 扩增、ALK 突变和 TP53 突变伴多药耐药。
鉴于多胺拮抗剂方案在多种体内模型中表现出广泛的临床前活性,有必要对神经母细胞瘤和潜在的其他 MYC 驱动肿瘤进行此类方法的临床研究。临床癌症研究;22(17);4391-404。©2016AACR。