Yang Tao, Dangi Beni B, Kaiser Ralf I, Bertels Luke W, Head-Gordon Martin
Department of Chemistry, University of Hawai'i at Manoa , Honolulu, Hawaii 96822, United States.
Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States.
J Phys Chem A. 2016 Jul 14;120(27):4872-83. doi: 10.1021/acs.jpca.5b12457. Epub 2016 Feb 19.
The bimolecular gas-phase reactions of the ground-state silylidyne radical (SiH; X(2)Π) with methylacetylene (CH3CCH; X(1)A1) and D4-methylacetylene (CD3CCD; X(1)A1) were explored at collision energies of 30 kJ mol(-1) under single-collision conditions exploiting the crossed molecular beam technique and complemented by electronic structure calculations. These studies reveal that the reactions follow indirect scattering dynamics, have no entrance barriers, and are initiated by the addition of the silylidyne radical to the carbon-carbon triple bond of the methylacetylene molecule either to one carbon atom (C1; [i1]/[i2]) or to both carbon atoms concurrently (C1-C2; [i3]). The collision complexes [i1]/[i2] eventually isomerize via ring-closure to the c-SiC3H5 doublet radical intermediate [i3], which is identified as the decomposing reaction intermediate. The hydrogen atom is emitted almost perpendicularly to the rotational plane of the fragmenting complex resulting in a sideways scattering dynamics with the reaction being overall exoergic by -12 ± 11 kJ mol(-1) (experimental) and -1 ± 3 kJ mol(-1) (computational) to form the cyclic 2-methyl-1-silacycloprop-2-enylidene molecule (c-SiC3H4; p1). In line with computational data, experiments of silylidyne with D4-methylacetylene (CD3CCD; X(1)A1) depict that the hydrogen is emitted solely from the silylidyne moiety but not from methylacetylene. The dynamics are compared to those of the related D1-silylidyne (SiD; X(2)Π)-acetylene (HCCH; X(1)Σg(+)) reaction studied previously in our group, and from there, we discovered that the methyl group acts primarily as a spectator in the title reaction. The formation of 2-methyl-1-silacycloprop-2-enylidene under single-collision conditions via a bimolecular gas-phase reaction augments our knowledge of the hitherto poorly understood silylidyne (SiH; X(2)Π) radical reactions with small hydrocarbon molecules leading to the synthesis of organosilicon molecules in cold molecular clouds and in carbon-rich circumstellar envelopes.
利用交叉分子束技术,在单碰撞条件下,于30 kJ mol⁻¹ 的碰撞能量下,对基态硅炔自由基(SiH;X²Π)与甲基乙炔(CH₃CCH;X¹A₁)和D₄ - 甲基乙炔(CD₃CCD;X¹A₁)的双分子气相反应进行了研究,并辅以电子结构计算。这些研究表明,反应遵循间接散射动力学,没有能垒,且由硅炔自由基加成到甲基乙炔分子的碳 - 碳三键上引发,加成到一个碳原子(C1;[i1]/[i2])或同时加成到两个碳原子上(C1 - C2;[i3])。碰撞复合物[i1]/[i2]最终通过闭环异构化为环硅丙炔双自由基中间体[i3],该中间体被确定为分解反应中间体。氢原子几乎垂直于碎片化复合物的旋转平面发射,导致侧向散射动力学,反应总体上是放热的,实验值为 - 12 ± 11 kJ mol⁻¹,计算值为 - 1 ± 3 kJ mol⁻¹,形成环状2 - 甲基 - 1 - 硅环丙 - 2 - 亚烯分子(c - SiC₃H₄;p1)。与计算数据一致,硅炔与D₄ - 甲基乙炔(CD₃CCD;X¹A₁)的实验表明,氢仅从硅炔部分发射,而不是从甲基乙炔发射。将该动力学与我们小组之前研究的相关D1 - 硅炔(SiD;X²Π) - 乙炔(HCCH;X¹Σg⁺)反应的动力学进行了比较,由此我们发现甲基在该反应中主要起旁观者的作用。在单碰撞条件下通过双分子气相反应形成2 - 甲基 - 1 - 硅环丙 - 2 - 亚烯,增加了我们对迄今了解甚少的硅炔(SiH;X²Π)自由基与小分子烃反应的认识,这些反应导致在冷分子云和富碳星周包层中合成有机硅分子。