Yang Tao, Dangi Beni B, Maksyutenko Pavlo, Kaiser Ralf I, Bertels Luke W, Head-Gordon Martin
Department of Chemistry, University of Hawai'i at Manoa , Honolulu, Hawaii 96822, United States.
Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States.
J Phys Chem A. 2015 Dec 17;119(50):12562-78. doi: 10.1021/acs.jpca.5b09773. Epub 2015 Nov 12.
The crossed molecular beam reactions of the ground-state silylidyne radical (SiH; X(2)Π) with allene (H2CCCH2; X(1)A1) and D4-allene (D2CCCD2; X(1)A1) were carried out at collision energies of 30 kJ mol(-1). Electronic structure calculations propose that the reaction of silylidyne with allene has no entrance barrier and is initiated by silylidyne addition to the π electron density of allene either to one carbon atom (C1/C2) or to both carbon atoms simultaneously via indirect (complex forming) reaction dynamics. The initially formed addition complexes isomerize via two distinct reaction pathways, both leading eventually to a cyclic SiC3H5 intermediate. The latter decomposes through a loose exit transition state via an atomic hydrogen loss perpendicularly to the plane of the decomposing complex (sideways scattering) in an overall exoergic reaction (experimentally: -19 ± 13 kJ mol(-1); computationally: -5 ± 3 kJ mol(-1)). This hydrogen loss yields the hitherto elusive 2-methyl-1-silacycloprop-2-enylidene molecule (c-SiC3H4), which can be derived from the closed-shell cyclopropenylidene molecule (c-C3H2) by replacing a hydrogen atom with a methyl group and the carbene carbon atom by the isovalent silicon atom. The synthesis of the 2-methyl-1-silacycloprop-2-enylidene molecule in the bimolecular gas-phase reaction of silylidyne with allene enriches our understanding toward the formation of organosilicon species in the gas phase of the interstellar medium in particular via exoergic reactions of no entrance barrier. This facile route to 2-methyl-1-silacycloprop-2-enylidene via a silylidyne radical reaction with allene opens up a versatile approach to form hitherto poorly characterized silicon-bearing species in extraterrestrial environments; this reaction class might represent the missing link, leading from silicon-bearing radicals via organosilicon chemistry eventually to silicon-carbon-rich interstellar grains even in cold molecular clouds where temperatures are as low as 10 K.
在30 kJ mol⁻¹的碰撞能量下,对基态甲硅烷基自由基(SiH;X²Π)与丙二烯(H₂CCCH₂;X¹A₁)以及D₄ - 丙二烯(D₂CCCD₂;X¹A₁)进行了交叉分子束反应。电子结构计算表明,甲硅烷基自由基与丙二烯的反应没有能垒,反应通过甲硅烷基自由基加成到丙二烯的π电子密度上引发,加成可以发生在一个碳原子(C1/C2)上,或者通过间接(形成复合物)反应动力学同时加成到两个碳原子上。最初形成的加成复合物通过两种不同的反应途径异构化,最终都生成环状SiC₃H₅中间体。后者通过一个宽松的出口过渡态分解,通过垂直于分解复合物平面的原子氢损失(侧向散射),这是一个总体放能反应(实验值:-19 ± 13 kJ mol⁻¹;计算值:-5 ± 3 kJ mol⁻¹)。这种氢损失产生了迄今为止难以捉摸的2 - 甲基 - 1 - 硅杂环丙 - 2 - 亚烯分子(c - SiC₃H₄),它可以通过用甲基取代闭壳层环丙烯亚基分子(c - C₃H₂)中的一个氢原子,并将卡宾碳原子替换为等电子的硅原子而得到。在甲硅烷基自由基与丙二烯的双分子气相反应中合成2 - 甲基 - 1 - 硅杂环丙 - 2 - 亚烯分子,丰富了我们对星际介质气相中有机硅物种形成的理解,特别是通过无入口能垒的放能反应。通过甲硅烷基自由基与丙二烯反应生成2 - 甲基 - 1 - 硅杂环丙 - 2 - 亚烯的这条便捷途径,为在外层空间环境中形成迄今表征不佳的含硅物种开辟了一种通用方法;这类反应可能是缺失的环节,从含硅自由基通过有机硅化学最终通向富含硅碳的星际尘埃,甚至在温度低至10 K的冷分子云中也是如此。