Suppr超能文献

葡糖神经酰胺在流体磷脂膜中重组含胆固醇的结构域。

Glucosylceramide Reorganizes Cholesterol-Containing Domains in a Fluid Phospholipid Membrane.

作者信息

Varela Ana R P, Couto André Sá, Fedorov Aleksander, Futerman Anthony H, Prieto Manuel, Silva Liana C

机构信息

iMed.ULisboa-Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal; Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel.

iMed.ULisboa-Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal.

出版信息

Biophys J. 2016 Feb 2;110(3):612-622. doi: 10.1016/j.bpj.2015.12.019.

Abstract

Glucosylceramide (GlcCer), one of the simplest glycosphingolipids, plays key roles in physiology and pathophysiology. It has been suggested that GlcCer modulates cellular events by forming specialized domains. In this study, we investigated the interplay between GlcCer and cholesterol (Chol), an important lipid involved in the formation of liquid-ordered (lo) phases. Using fluorescence microscopy and spectroscopy, and dynamic and electrophoretic light scattering, we characterized the interaction between these lipids in different pH environments. A quantitative description of the phase behavior of the ternary unsaturated phospholipid/Chol/GlcCer mixture is presented. The results demonstrate coexistence between lo and liquid-disordered (ld) phases. However, the extent of lo/ld phase separation is sparse, mainly due to the ability of GlcCer to segregate into tightly packed gel domains. As a result, the phase diagram of these mixtures is characterized by an extensive three-phase coexistence region of fluid (ld-phospholipid enriched)/lo (Chol enriched)/gel (GlcCer enriched). Moreover, the results show that upon acidification, GlcCer solubility in the lo phase is increased, leading to a larger lo/ld coexistence region. Quantitative analyses allowed us to determine the differences in the composition of the phases at neutral and acidic pH. These results predict the impact of GlcCer on domain formation and membrane organization in complex biological membranes, and provide a background for unraveling the relationship between the biophysical properties of GlcCer and its biological action.

摘要

葡萄糖神经酰胺(GlcCer)是最简单的糖鞘脂之一,在生理和病理生理过程中发挥着关键作用。有人提出,GlcCer通过形成特殊结构域来调节细胞活动。在本研究中,我们调查了GlcCer与胆固醇(Chol)之间的相互作用,胆固醇是参与液态有序(lo)相形成的一种重要脂质。我们使用荧光显微镜和光谱学,以及动态和电泳光散射技术,对不同pH环境下这些脂质之间的相互作用进行了表征。本文给出了三元不饱和磷脂/Chol/GlcCer混合物相行为的定量描述。结果表明存在lo相和液态无序(ld)相的共存。然而,lo/ld相分离的程度很稀疏,主要是因为GlcCer能够分离成紧密堆积的凝胶结构域。因此,这些混合物的相图的特征是存在一个广泛的三相共存区域,即流体相(富含ld - 磷脂)/lo相(富含Chol)/凝胶相(富含GlcCer)。此外,结果表明,酸化后,GlcCer在lo相中的溶解度增加,导致更大的lo/ld共存区域。定量分析使我们能够确定中性和酸性pH条件下各相组成的差异。这些结果预测了GlcCer对复杂生物膜中结构域形成和膜组织的影响,并为阐明GlcCer的生物物理性质与其生物学作用之间的关系提供了背景。

相似文献

1
Glucosylceramide Reorganizes Cholesterol-Containing Domains in a Fluid Phospholipid Membrane.
Biophys J. 2016 Feb 2;110(3):612-622. doi: 10.1016/j.bpj.2015.12.019.
2
Pathological levels of glucosylceramide change the biophysical properties of artificial and cell membranes.
Phys Chem Chem Phys. 2016 Dec 21;19(1):340-346. doi: 10.1039/c6cp07227e.
3
Molecular dynamics simulations of ternary lipid bilayers containing plant sterol and glucosylceramide.
Chem Phys Lipids. 2017 Mar;203:24-32. doi: 10.1016/j.chemphyslip.2017.01.003. Epub 2017 Jan 11.
4
Effect of glucosylceramide on the biophysical properties of fluid membranes.
Biochim Biophys Acta. 2013 Mar;1828(3):1122-30. doi: 10.1016/j.bbamem.2012.11.018. Epub 2012 Nov 27.
5
Phase diagram of a polyunsaturated lipid mixture: Brain sphingomyelin/1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine/cholesterol.
Biochim Biophys Acta. 2016 Jan;1858(1):153-61. doi: 10.1016/j.bbamem.2015.10.016. Epub 2015 Oct 23.
6
Homogeneous and Heterogeneous Bilayers of Ternary Lipid Compositions Containing Equimolar Ceramide and Cholesterol.
Langmuir. 2019 Apr 16;35(15):5305-5315. doi: 10.1021/acs.langmuir.9b00324. Epub 2019 Apr 8.
7
Cholesterol-induced microdomain formation in lipid bilayer membranes consisting of completely miscible lipids.
Biochim Biophys Acta Biomembr. 2021 Aug 1;1863(8):183626. doi: 10.1016/j.bbamem.2021.183626. Epub 2021 Apr 24.
8
Role of Aminophospholipids in the Formation of Lipid Rafts in Model Membranes.
J Fluoresc. 2015 Jul;25(4):1037-43. doi: 10.1007/s10895-015-1589-y. Epub 2015 Jun 16.
9
Influence of intracellular membrane pH on sphingolipid organization and membrane biophysical properties.
Langmuir. 2014 Apr 15;30(14):4094-104. doi: 10.1021/la5003397. Epub 2014 Apr 4.
10
Liquid-ordered microdomains in lipid rafts and plasma membrane of U-87 MG cells: a time-resolved fluorescence study.
Eur Biophys J. 2003 Jul;32(4):381-91. doi: 10.1007/s00249-003-0281-3. Epub 2003 Mar 6.

引用本文的文献

1
Structural dissection of ergosterol metabolism reveals a pathway optimized for membrane phase separation.
Sci Adv. 2025 Apr 25;11(17):eadu7190. doi: 10.1126/sciadv.adu7190. Epub 2025 Apr 23.
2
An LC-MS/MS Multiplexed Method to Quantify 14 Sphingolipids in Human Cerebrospinal Fluid (CSF).
Methods Mol Biol. 2025;2914:251-258. doi: 10.1007/978-1-0716-4462-1_18.
3
Lysosomal membrane integrity in fibroblasts derived from patients with Gaucher disease.
Cell Struct Funct. 2024 Jan 23;49(1):1-10. doi: 10.1247/csf.23066. Epub 2023 Dec 9.
4
Intracellular sphingolipid sorting drives membrane phase separation in the yeast vacuole.
J Biol Chem. 2024 Jan;300(1):105496. doi: 10.1016/j.jbc.2023.105496. Epub 2023 Nov 25.
5
6
Modelling Hyperglycaemia in an Epithelial Membrane Model: Biophysical Characterisation.
Biomolecules. 2022 Oct 21;12(10):1534. doi: 10.3390/biom12101534.
7
Sphingolipids and Cholesterol.
Adv Exp Med Biol. 2022;1372:1-14. doi: 10.1007/978-981-19-0394-6_1.
8
Effect of cholesterol on the lactosylceramide domains in phospholipid bilayers.
Biophys J. 2022 Apr 5;121(7):1143-1155. doi: 10.1016/j.bpj.2022.02.037. Epub 2022 Feb 23.

本文引用的文献

1
2
Influence of intracellular membrane pH on sphingolipid organization and membrane biophysical properties.
Langmuir. 2014 Apr 15;30(14):4094-104. doi: 10.1021/la5003397. Epub 2014 Apr 4.
3
Line active molecules promote inhomogeneous structures in membranes: theory, simulations and experiments.
Adv Colloid Interface Sci. 2014 Jun;208:58-65. doi: 10.1016/j.cis.2014.02.007. Epub 2014 Feb 15.
4
Ceramide: a simple sphingolipid with unique biophysical properties.
Prog Lipid Res. 2014 Apr;54:53-67. doi: 10.1016/j.plipres.2014.01.004. Epub 2014 Feb 7.
5
Impact of extracellular acidosis on intracellular pH control and cell signaling in tumor cells.
Adv Exp Med Biol. 2013;789:221-228. doi: 10.1007/978-1-4614-7411-1_30.
6
Effect of glucosylceramide on the biophysical properties of fluid membranes.
Biochim Biophys Acta. 2013 Mar;1828(3):1122-30. doi: 10.1016/j.bbamem.2012.11.018. Epub 2012 Nov 27.
7
Reorganization of lipid domain distribution in giant unilamellar vesicles upon immobilization with different membrane tethers.
Biochim Biophys Acta. 2012 Nov;1818(11):2605-15. doi: 10.1016/j.bbamem.2012.05.028. Epub 2012 Jun 1.
8
The photophysics of a Rhodamine head labeled phospholipid in the identification and characterization of membrane lipid phases.
Chem Phys Lipids. 2012 Apr;165(3):311-9. doi: 10.1016/j.chemphyslip.2012.02.007. Epub 2012 Mar 3.
9
Effect of ceramide structure on membrane biophysical properties: the role of acyl chain length and unsaturation.
Biochim Biophys Acta. 2011 Nov;1808(11):2753-60. doi: 10.1016/j.bbamem.2011.07.023. Epub 2011 Jul 30.
10
Glycosynaptic microdomains controlling tumor cell phenotype through alteration of cell growth, adhesion, and motility.
FEBS Lett. 2010 May 3;584(9):1901-6. doi: 10.1016/j.febslet.2009.10.065. Epub 2009 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验