Suppr超能文献

通过改变细胞生长、黏附和运动来控制肿瘤细胞表型的糖基突触微域。

Glycosynaptic microdomains controlling tumor cell phenotype through alteration of cell growth, adhesion, and motility.

机构信息

Division of Biomembrane Research, Pacific Northwest Research Institute, Seattle, WA 98122, USA.

出版信息

FEBS Lett. 2010 May 3;584(9):1901-6. doi: 10.1016/j.febslet.2009.10.065. Epub 2009 Oct 27.

Abstract

Glycosphingolipids (GSLs) GM3 (NeuAcalpha3Galbeta4Glcbeta1Cer) and GM2 (GalNAcbeta4[NeuAcalpha3]Galbeta4Glcbeta1Cer) inhibit (i) cell growth through inhibition of tyrosine kinase associated with growth factor receptor (GFR), (ii) cell adhesion/motility through inhibition of integrin-dependent signaling via Src kinases, or (iii) both cell growth and motility by blocking "cross-talk" between integrins and GFRs. These inhibitory effects are enhanced when GM3 or GM2 are in complex with specific tetraspanins (TSPs) (CD9, CD81, CD82). Processes (i)-(iii) occur through specific organization of GSLs with key molecules (TSPs, caveolins, GFRs, integrins) in the glycosynaptic microdomain. Some of these processes are shared with epithelial-mesenchymal transition induced by TGFbeta or under hypoxia, particularly that associated with cancer progression.

摘要

糖鞘脂 (Glycosphingolipids, GSLs) GM3 (NeuAcalpha3Galbeta4Glcbeta1Cer) 和 GM2 (GalNAcbeta4[NeuAcalpha3]Galbeta4Glcbeta1Cer) 通过抑制与生长因子受体 (Growth Factor Receptor, GFR) 相关的酪氨酸激酶,抑制细胞生长;通过Src 激酶抑制整合素依赖性信号转导,抑制细胞黏附和迁移;通过阻断整合素和 GFR 之间的“串扰”,同时抑制细胞生长和迁移。当 GM3 或 GM2 与特定的四跨膜蛋白 (Tetraspanins, TSPs) (CD9、CD81、CD82) 形成复合物时,这些抑制作用会增强。这些过程通过糖基突触微域中 GSL 与关键分子(TSPs、小窝蛋白、GFRs、整合素)的特定组织来实现。其中一些过程与 TGFbeta 诱导的上皮-间充质转化或缺氧有关,特别是与癌症进展相关的过程。

相似文献

1
Glycosynaptic microdomains controlling tumor cell phenotype through alteration of cell growth, adhesion, and motility.
FEBS Lett. 2010 May 3;584(9):1901-6. doi: 10.1016/j.febslet.2009.10.065. Epub 2009 Oct 27.
2
Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains.
Biochim Biophys Acta. 2008 Mar;1780(3):421-33. doi: 10.1016/j.bbagen.2007.10.008. Epub 2007 Oct 22.
4
Ganglioside GM2/GM3 complex affixed on silica nanospheres strongly inhibits cell motility through CD82/cMet-mediated pathway.
Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):1925-30. doi: 10.1073/pnas.0709619104. Epub 2008 Feb 6.
6
Effect of ganglioside and tetraspanins in microdomains on interaction of integrins with fibroblast growth factor receptor.
J Biol Chem. 2005 Apr 22;280(16):16227-34. doi: 10.1074/jbc.M413713200. Epub 2005 Feb 14.
7
GM3 and cancer.
Glycoconj J. 2015 Feb;32(1-2):1-8. doi: 10.1007/s10719-014-9572-4. Epub 2015 Jan 23.
8
GM2/GM3 controls the organizational status of CD82/Met microdomains: further studies in GM2/GM3 complexation.
Glycoconj J. 2022 Oct;39(5):653-661. doi: 10.1007/s10719-022-10061-z. Epub 2022 May 10.
10
Structure and function of glycosphingolipids and sphingolipids: recollections and future trends.
Biochim Biophys Acta. 2008 Mar;1780(3):325-46. doi: 10.1016/j.bbagen.2007.08.015. Epub 2007 Sep 6.

引用本文的文献

1
DANGO: An MS data annotation tool for glycolipidomics.
BBA Adv. 2025 Apr 27;7:100161. doi: 10.1016/j.bbadva.2025.100161. eCollection 2025.
2
Suppression of Bone Formation and Resorption by the Deletion of Complex Gangliosides.
In Vivo. 2025 Jan-Feb;39(1):257-266. doi: 10.21873/invivo.13824.
3
Pan-cancer analysis of B3GNT5 with potential implications for cancer immunotherapy and cancer stem cell stemness.
PLoS One. 2024 Dec 13;19(12):e0314609. doi: 10.1371/journal.pone.0314609. eCollection 2024.
4
Regulation of Glycosylation in Bone Metabolism.
Int J Mol Sci. 2024 Mar 22;25(7):3568. doi: 10.3390/ijms25073568.
5
Non-Mutational Key Features in the Biology of Thymomas.
Cancers (Basel). 2024 Feb 26;16(5):942. doi: 10.3390/cancers16050942.
6
Role of glycosphingolipid biosynthesis coregulators in malignant progression of thymoma.
Int J Biol Sci. 2023 Aug 21;19(14):4442-4456. doi: 10.7150/ijbs.83468. eCollection 2023.
7
Comparison of alternative splicing (AS) events in adipose tissue of polled dorset versus small tail han sheep.
Heliyon. 2023 Mar 31;9(4):e14938. doi: 10.1016/j.heliyon.2023.e14938. eCollection 2023 Apr.
9
Gangliosides in nervous system development, regeneration, and pathologies.
Neural Regen Res. 2023 Jan;18(1):81-86. doi: 10.4103/1673-5374.343890.

本文引用的文献

1
Gold Glyconanoparticles as Water-Soluble Polyvalent Models To Study Carbohydrate Interactions.
Angew Chem Int Ed Engl. 2001 Jun 18;40(12):2257-2261. doi: 10.1002/1521-3773(20010618)40:12<2257::AID-ANIE2257>3.0.CO;2-S.
3
Probing specificity in carbohydrate-carbohydrate interactions with micelles and Langmuir monolayers.
Angew Chem Int Ed Engl. 2003 Jan 3;42(1):95-8. doi: 10.1002/anie.200390063.
4
Oxygen regulates epithelial-to-mesenchymal transition: insights into molecular mechanisms and relevance to disease.
Kidney Int. 2009 Sep;76(5):492-9. doi: 10.1038/ki.2009.222. Epub 2009 Jun 17.
5
Natural ligands for CD33-related Siglecs?
Glycobiology. 2009 Aug;19(8):810-2. doi: 10.1093/glycob/cwp063. Epub 2009 May 9.
6
Specific glycosphingolipids mediate epithelial-to-mesenchymal transition of human and mouse epithelial cell lines.
Proc Natl Acad Sci U S A. 2009 May 5;106(18):7461-6. doi: 10.1073/pnas.0902368106. Epub 2009 Apr 20.
7
Epithelial-mesenchymal transition: a cancer researcher's conceptual friend and foe.
Am J Pathol. 2009 May;174(5):1588-93. doi: 10.2353/ajpath.2009.080545. Epub 2009 Mar 26.
8
Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits.
Nat Rev Cancer. 2009 Apr;9(4):265-73. doi: 10.1038/nrc2620. Epub 2009 Mar 5.
9
Sphingolipids and membrane environments for caveolin.
FEBS Lett. 2009 Feb 18;583(4):597-606. doi: 10.1016/j.febslet.2009.01.007. Epub 2009 Jan 22.
10
Glycosphingolipid behaviour in complex membranes.
Biochim Biophys Acta. 2009 Jan;1788(1):184-93. doi: 10.1016/j.bbamem.2008.09.001. Epub 2008 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验