Suppr超能文献

在饮食诱导的肥胖和胰岛素抵抗中,对钠敏感的血压升高不依赖于上皮钠通道(ENaC)。

Na+-sensitive elevation in blood pressure is ENaC independent in diet-induced obesity and insulin resistance.

作者信息

Nizar Jonathan M, Dong Wuxing, McClellan Robert B, Labarca Mariana, Zhou Yuehan, Wong Jared, Goens Donald G, Zhao Mingming, Velarde Nona, Bernstein Daniel, Pellizzon Michael, Satlin Lisa M, Bhalla Vivek

机构信息

Division of Nephrology, Department of Medicine, Stanford University, Palo Alto, California;

Division of Pediatric Nephrology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York;

出版信息

Am J Physiol Renal Physiol. 2016 May 1;310(9):F812-20. doi: 10.1152/ajprenal.00265.2015. Epub 2016 Feb 3.

Abstract

The majority of patients with obesity, insulin resistance, and metabolic syndrome have hypertension, but the mechanisms of hypertension are poorly understood. In these patients, impaired sodium excretion is critical for the genesis of Na(+)-sensitive hypertension, and prior studies have proposed a role for the epithelial Na(+) channel (ENaC) in this syndrome. We characterized high fat-fed mice as a model in which to study the contribution of ENaC-mediated Na(+) reabsorption in obesity and insulin resistance. High fat-fed mice demonstrated impaired Na(+) excretion and elevated blood pressure, which was significantly higher on a high-Na(+) diet compared with low fat-fed control mice. However, high fat-fed mice had no increase in ENaC activity as measured by Na(+) transport across microperfused cortical collecting ducts, electrolyte excretion, or blood pressure. In addition, we found no difference in endogenous urinary aldosterone excretion between groups on a normal or high-Na(+) diet. High fat-fed mice provide a model of metabolic syndrome, recapitulating obesity, insulin resistance, impaired natriuresis, and a Na(+)-sensitive elevation in blood pressure. Surprisingly, in contrast to previous studies, our data demonstrate that high fat feeding of mice impairs natriuresis and produces elevated blood pressure that is independent of ENaC activity and likely caused by increased Na(+) reabsorption upstream of the aldosterone-sensitive distal nephron.

摘要

大多数肥胖、胰岛素抵抗和代谢综合征患者患有高血压,但高血压的发病机制尚不清楚。在这些患者中,钠排泄受损对于钠敏感性高血压的发生至关重要,先前的研究提出上皮钠通道(ENaC)在该综合征中起作用。我们将高脂喂养小鼠作为一种模型,用于研究ENaC介导的钠重吸收在肥胖和胰岛素抵抗中的作用。高脂喂养小鼠表现出钠排泄受损和血压升高,与低脂喂养的对照小鼠相比,高钠饮食时血压显著更高。然而,通过跨微灌注皮质集合管的钠转运、电解质排泄或血压测量,高脂喂养小鼠的ENaC活性并未增加。此外,我们发现在正常或高钠饮食组之间,内源性尿醛固酮排泄没有差异。高脂喂养小鼠提供了一种代谢综合征模型,概括了肥胖、胰岛素抵抗、钠利尿受损和血压的钠敏感性升高。令人惊讶的是,与先前的研究相反,我们的数据表明,高脂喂养小鼠损害钠利尿并导致血压升高,这与ENaC活性无关,可能是由醛固酮敏感性远端肾单位上游的钠重吸收增加引起的。

相似文献

1
Na+-sensitive elevation in blood pressure is ENaC independent in diet-induced obesity and insulin resistance.
Am J Physiol Renal Physiol. 2016 May 1;310(9):F812-20. doi: 10.1152/ajprenal.00265.2015. Epub 2016 Feb 3.
3
4
Aldosterone-dependent and -independent regulation of Na and K excretion and ENaC in mouse kidneys.
Am J Physiol Renal Physiol. 2020 Aug 1;319(2):F323-F334. doi: 10.1152/ajprenal.00204.2020. Epub 2020 Jul 6.
5
Role of paraoxonase 3 in regulating ENaC-mediated Na transport in the distal nephron.
J Physiol. 2024 Feb;602(4):737-757. doi: 10.1113/JP285034. Epub 2024 Feb 12.
6
Na(+) dependence of K(+) -induced natriuresis, kaliuresis and Na(+) /Cl(-) cotransporter dephosphorylation.
Acta Physiol (Oxf). 2016 Sep;218(1):49-61. doi: 10.1111/apha.12707. Epub 2016 Jun 15.
7
Deletion of renal Nedd4-2 abolishes the effect of high sodium intake (HS) on Kir4.1, ENaC, and NCC and causes hypokalemia during high HS.
Am J Physiol Renal Physiol. 2021 May 1;320(5):F883-F896. doi: 10.1152/ajprenal.00555.2020. Epub 2021 Apr 5.
8
Attenuation of lithium-induced natriuresis and kaliuresis in P2Y₂ receptor knockout mice.
Am J Physiol Renal Physiol. 2013 Aug 1;305(3):F407-16. doi: 10.1152/ajprenal.00464.2012. Epub 2013 Jun 5.
9
Purinergic inhibition of ENaC produces aldosterone escape.
J Am Soc Nephrol. 2010 Nov;21(11):1903-11. doi: 10.1681/ASN.2010040377. Epub 2010 Sep 2.
10
Chronic angiotensin II infusion drives extensive aldosterone-independent epithelial Na+ channel activation.
Hypertension. 2013 Dec;62(6):1111-1122. doi: 10.1161/HYPERTENSIONAHA.113.01797. Epub 2013 Sep 23.

引用本文的文献

1
Epithelial Na Channels Function as Extracellular Sensors.
Compr Physiol. 2024 Mar 29;14(2):1-41. doi: 10.1002/cphy.c230015.
3
Pathogenesis of Hypertension in Metabolic Syndrome: The Role of Fructose and Salt.
Int J Mol Sci. 2023 Feb 21;24(5):4294. doi: 10.3390/ijms24054294.
6
Ion channels and transporters in diabetic kidney disease.
Curr Top Membr. 2019;83:353-396. doi: 10.1016/bs.ctm.2019.01.001. Epub 2019 Feb 18.
7
Obesity, kidney dysfunction and hypertension: mechanistic links.
Nat Rev Nephrol. 2019 Jun;15(6):367-385. doi: 10.1038/s41581-019-0145-4.
8
Impact of obesity as an independent risk factor for the development of renal injury: implications from rat models of obesity.
Am J Physiol Renal Physiol. 2019 Feb 1;316(2):F316-F327. doi: 10.1152/ajprenal.00162.2018. Epub 2018 Dec 12.
10
Physiological hyperinsulinemia caused by acute hyperglycemia minimizes renal sodium loss by direct action on kidneys.
Am J Physiol Regul Integr Comp Physiol. 2018 Sep 1;315(3):R547-R552. doi: 10.1152/ajpregu.00016.2018. Epub 2018 May 23.

本文引用的文献

1
Novel mechanisms of Na+ retention in obesity: phosphorylation of NKCC2 and regulation of SPAK/OSR1 by AMPK.
Am J Physiol Renal Physiol. 2014 Jul 1;307(1):F96-F106. doi: 10.1152/ajprenal.00524.2013. Epub 2014 May 7.
2
The adrenergic regulation of proximal tubular Na⁺/H⁺ exchanger 3 in the rat.
Acta Physiol (Oxf). 2014 Mar;210(3):678-89. doi: 10.1111/apha.12181. Epub 2013 Nov 5.
4
Reduced ENaC activity and blood pressure in mice with genetic knockout of the insulin receptor in the renal collecting duct.
Am J Physiol Renal Physiol. 2013 Feb 1;304(3):F279-88. doi: 10.1152/ajprenal.00161.2012. Epub 2012 Nov 28.
7
Beraprost sodium, a stable prostacyclin analogue, improves insulin resistance in high-fat diet-induced obese mice.
J Endocrinol. 2012 Jun;213(3):285-91. doi: 10.1530/JOE-12-0014. Epub 2012 Mar 29.
8
Effects of insulin on Na and K transporters in the rat CCD.
Am J Physiol Renal Physiol. 2012 May 15;302(10):F1227-33. doi: 10.1152/ajprenal.00675.2011. Epub 2012 Feb 22.
9
Inducible kidney-specific Sgk1 knockout mice show a salt-losing phenotype.
Am J Physiol Renal Physiol. 2012 Apr 15;302(8):F977-85. doi: 10.1152/ajprenal.00535.2011. Epub 2012 Feb 1.
10
Role of angiotensin II-mediated AMPK inactivation on obesity-related salt-sensitive hypertension.
Biochem Biophys Res Commun. 2012 Feb 17;418(3):559-64. doi: 10.1016/j.bbrc.2012.01.070. Epub 2012 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验