Suppr超能文献

胰岛素对大鼠 CCD 中钠和钾转运体的影响。

Effects of insulin on Na and K transporters in the rat CCD.

机构信息

Dept. of Physiology and Biophysics, Weill Medical College of Cornell Univ., 1300 York Ave., New York, NY 10065, USA.

出版信息

Am J Physiol Renal Physiol. 2012 May 15;302(10):F1227-33. doi: 10.1152/ajprenal.00675.2011. Epub 2012 Feb 22.

Abstract

We tested the effects of insulin (2 nM, 30-60 min) on principal cells of isolated split-open rat cortical collecting ducts (CCD) using whole-cell current measurements. Insulin addition to the superfusate of the tubules enhanced Na pump (ouabain-sensitive) current from 18 ± 3 to 31 ± 3 pA/cell in control and from 74 ± 9 to 126 ± 11 pA/cell in high K-fed animals. It also more than doubled ROMK (tertiapin-Q-sensitive) K(+) currents in control CCD from 320 ± 40 to 700 ± 80 pA/cell, although it did not affect this current in tubules from K-loaded rats. Insulin did not induce the appearance of amiloride-sensitive Na(+) current in control animals, while in high K-fed animals the currents were similar in the presence (140 ± 30) and the absence (180 ± 70 pA/cell) of insulin. Intraperitoneal injection of insulin plus hypertonic dextrose decreased Na excretion, as previously reported. However, injection of dextrose alone, or the nonmetabolized sugar mannose, had similar effects, suggesting that they were largely the result of vascular volume depletion rather than specific actions of the hormone. In summary, we find no evidence for acute upregulation of the epithelial Na channel (ENaC) by physiological concentrations of insulin in the mammalian CCD. However, the hormone does activate both the Na/K pump and apical K(+) channels and could, under some conditions, enhance renal K(+) secretion.

摘要

我们使用全细胞电流测量法,测试了胰岛素(2 nM,30-60 分钟)对分离的大鼠皮质集合管(CCD)分裂细胞的作用。向管状超滤液中添加胰岛素,可使对照条件下的钠泵(哇巴因敏感)电流从 18 ± 3 增加到 31 ± 3 pA/细胞,而在高钾喂养的动物中则从 74 ± 9 增加到 126 ± 11 pA/细胞。它还使对照 CCD 中的 ROMK(特提潘 Q 敏感)K(+)电流增加了一倍以上,从 320 ± 40 增加到 700 ± 80 pA/细胞,尽管它对高钾喂养的管状中的这种电流没有影响。胰岛素不会在对照动物中诱导出阿米洛利敏感的 Na(+)电流,而在高钾喂养的动物中,在存在(140 ± 30)和不存在(180 ± 70 pA/细胞)胰岛素的情况下,电流相似。如先前报道,腹腔内注射胰岛素加高渗葡萄糖可减少钠排泄。然而,单独注射葡萄糖或非代谢性糖甘露糖也有类似的效果,这表明它们主要是由于血管容量减少,而不是激素的特定作用。总之,我们没有发现生理浓度的胰岛素在哺乳动物 CCD 中急性上调上皮钠通道(ENaC)的证据。然而,该激素确实会激活钠/钾泵和顶端 K(+)通道,并且在某些条件下,可增强肾脏 K(+)分泌。

相似文献

1
Effects of insulin on Na and K transporters in the rat CCD.
Am J Physiol Renal Physiol. 2012 May 15;302(10):F1227-33. doi: 10.1152/ajprenal.00675.2011. Epub 2012 Feb 22.
2
Conservation of Na+ vs. K+ by the rat cortical collecting duct.
Am J Physiol Renal Physiol. 2011 Jul;301(1):F14-20. doi: 10.1152/ajprenal.00705.2010. Epub 2011 Mar 30.
3
High baseline ROMK activity in the mouse late distal convoluted and early connecting tubule probably contributes to aldosterone-independent K secretion.
Am J Physiol Renal Physiol. 2022 Jan 1;322(1):F42-F54. doi: 10.1152/ajprenal.00252.2021. Epub 2021 Nov 29.
4
Insulin and IGF-1 activate Kir4.1/5.1 channels in cortical collecting duct principal cells to control basolateral membrane voltage.
Am J Physiol Renal Physiol. 2016 Feb 15;310(4):F311-21. doi: 10.1152/ajprenal.00436.2015. Epub 2015 Dec 2.
5
Regulation of the Na-K pump of the rat cortical collecting tubule by aldosterone.
J Gen Physiol. 1993 Jul;102(1):43-57. doi: 10.1085/jgp.102.1.43.
6
High-conductance K channels in intercalated cells of the rat distal nephron.
Am J Physiol Renal Physiol. 2007 Mar;292(3):F966-73. doi: 10.1152/ajprenal.00191.2006. Epub 2006 Oct 24.
7
Dietary K regulates ROMK channels in connecting tubule and cortical collecting duct of rat kidney.
Am J Physiol Renal Physiol. 2009 Feb;296(2):F347-54. doi: 10.1152/ajprenal.90527.2008. Epub 2008 Nov 26.
8
10
Kidney-specific WNK1 regulates sodium reabsorption and potassium secretion in mouse cortical collecting duct.
Am J Physiol Renal Physiol. 2013 Feb 15;304(4):F397-402. doi: 10.1152/ajprenal.00589.2012. Epub 2012 Nov 28.

引用本文的文献

1
Epithelial Na Channels Function as Extracellular Sensors.
Compr Physiol. 2024 Mar 29;14(2):1-41. doi: 10.1002/cphy.c230015.
2
Directing two-way traffic in the kidney: A tale of two ions.
J Gen Physiol. 2022 Oct 3;154(10). doi: 10.1085/jgp.202213179. Epub 2022 Sep 1.
3
Postprandial Effects on ENaC-Mediated Sodium Absorption.
Sci Rep. 2019 Mar 12;9(1):4296. doi: 10.1038/s41598-019-40639-x.
4
Physiological hyperinsulinemia caused by acute hyperglycemia minimizes renal sodium loss by direct action on kidneys.
Am J Physiol Regul Integr Comp Physiol. 2018 Sep 1;315(3):R547-R552. doi: 10.1152/ajpregu.00016.2018. Epub 2018 May 23.
5
Improved protocols for the study of urinary electrolyte excretion and blood pressure in rodents: use of gel food and stepwise changes in diet composition.
Am J Physiol Renal Physiol. 2018 Jun 1;314(6):F1129-F1137. doi: 10.1152/ajprenal.00474.2017. Epub 2018 Jan 10.
6
Chronic renal artery insulin infusion increases mean arterial pressure in male Sprague-Dawley rats.
Am J Physiol Renal Physiol. 2018 Jan 1;314(1):F81-F88. doi: 10.1152/ajprenal.00374.2017. Epub 2017 Sep 27.
7
The normal increase in insulin after a meal may be required to prevent postprandial renal sodium and volume losses.
Am J Physiol Regul Integr Comp Physiol. 2017 Jun 1;312(6):R965-R972. doi: 10.1152/ajpregu.00354.2016. Epub 2017 Mar 22.
8
Changes in urinary potassium excretion in patients with chronic kidney disease.
Kidney Res Clin Pract. 2016 Jun;35(2):78-83. doi: 10.1016/j.krcp.2016.02.001. Epub 2016 Feb 27.
9
There and back again: insulin, ENaC, and the cortical collecting duct.
Physiol Rep. 2016 May;4(10). doi: 10.14814/phy2.12809.
10
Role and mechanisms of regulation of the basolateral K 4.1/K 5.1K channels in the distal tubules.
Acta Physiol (Oxf). 2017 Jan;219(1):260-273. doi: 10.1111/apha.12703. Epub 2016 May 20.

本文引用的文献

1
Dietary K regulates ROMK channels in connecting tubule and cortical collecting duct of rat kidney.
Am J Physiol Renal Physiol. 2009 Feb;296(2):F347-54. doi: 10.1152/ajprenal.90527.2008. Epub 2008 Nov 26.
2
Insulin's impact on renal sodium transport and blood pressure in health, obesity, and diabetes.
Am J Physiol Renal Physiol. 2007 Oct;293(4):F974-84. doi: 10.1152/ajprenal.00149.2007. Epub 2007 Aug 8.
4
Trafficking of ENaC subunits in response to acute insulin in mouse kidney.
Am J Physiol Renal Physiol. 2007 Jul;293(1):F178-85. doi: 10.1152/ajprenal.00447.2006. Epub 2007 Mar 27.
5
High-conductance K channels in intercalated cells of the rat distal nephron.
Am J Physiol Renal Physiol. 2007 Mar;292(3):F966-73. doi: 10.1152/ajprenal.00191.2006. Epub 2006 Oct 24.
6
Tertiapin-Q blocks recombinant and native large conductance K+ channels in a use-dependent manner.
J Pharmacol Exp Ther. 2005 Sep;314(3):1353-61. doi: 10.1124/jpet.105.085928. Epub 2005 Jun 9.
7
Quantification of K+ secretion through apical low-conductance K channels in the CCD.
Am J Physiol Renal Physiol. 2005 Jul;289(1):F117-26. doi: 10.1152/ajprenal.00471.2004. Epub 2005 Feb 22.
8
Na channels in the rat connecting tubule.
Am J Physiol Renal Physiol. 2004 Apr;286(4):F669-74. doi: 10.1152/ajprenal.00381.2003. Epub 2003 Dec 2.
9
Effect of insulin on membrane potential and potassium content of rat muscle.
Am J Physiol. 1959 Sep;197:515-23. doi: 10.1152/ajplegacy.1959.197.3.515.
10
Insulin-stimulated trafficking of ENaC in renal cells requires PI 3-kinase activity.
Am J Physiol Cell Physiol. 2003 Jun;284(6):C1645-53. doi: 10.1152/ajpcell.00372.2002. Epub 2003 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验