Paugh Steven W, Coss David R, Bao Ju, Laudermilk Lucas T, Grace Christy R, Ferreira Antonio M, Waddell M Brett, Ridout Granger, Naeve Deanna, Leuze Michael, LoCascio Philip F, Panetta John C, Wilkinson Mark R, Pui Ching-Hon, Naeve Clayton W, Uberbacher Edward C, Bonten Erik J, Evans William E
Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America.
Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America.
PLoS Comput Biol. 2016 Feb 4;12(2):e1004744. doi: 10.1371/journal.pcbi.1004744. eCollection 2016 Feb.
MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA) and typically down-regulating their stability or translation. Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence (i.e., NMR, FRET, SPR) that purine or pyrimidine-rich microRNAs of appropriate length and sequence form triple-helical structures with purine-rich sequences of duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show that several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 × 10(-16)) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. This work has thus revealed a new mechanism by which microRNAs could interact with gene promoter regions to modify gene transcription.
微小RNA是基因表达的重要调节因子,主要通过与已转录的信使核糖核酸(mRNA)上的序列特异性位点结合发挥作用,通常下调其稳定性或翻译水平。最近的研究表明,微小RNA也可能在上调mRNA转录水平中发挥作用,尽管尚未确立确切机制。双螺旋DNA能够通过双链体大沟中的Hoogsteen和反向Hoogsteen相互作用形成三螺旋结构,并且我们展示了物理证据(即核磁共振、荧光共振能量转移、表面等离子体共振),表明长度和序列合适的富含嘌呤或嘧啶的微小RNA与双链DNA的富含嘌呤序列形成三螺旋结构,并鉴定出有利于三链体形成的微小RNA序列。我们开发了一种算法(三叉戟)在全基因组范围内搜索潜在的三链体形成位点,并表明几个哺乳动物和非哺乳动物基因组富含强大的微小RNA三链体结合位点。我们表明,那些含有有利于微小RNA三链体形成序列的基因,其表达与靶向三链体结合序列的微小RNA的表达呈正相关的基因显著富集(3.3倍,p<2.2×10⁻¹⁶)。因此,这项工作揭示了一种微小RNA与基因启动子区域相互作用以修饰基因转录的新机制。