Suppr超能文献

集成光学加冗余电化学葡萄糖传感的正交冗余传感器的可行性

Feasibility of an Orthogonal Redundant Sensor incorporating Optical plus Redundant Electrochemical Glucose Sensing.

作者信息

McAuley Sybil A, Dang Tri T, Horsburgh Jodie C, Bansal Anubhuti, Ward Glenn M, Aroyan Sarkis, Jenkins Alicia J, MacIsaac Richard J, Shah Rajiv V, O'Neal David N

机构信息

Department of Medicine, St Vincent's Hospital, University of Melbourne, Melbourne, Australia Department of Endocrinology & Diabetes, St Vincent's Hospital Melbourne, Melbourne, Australia.

Medtronic Diabetes, Northridge, CA, USA.

出版信息

J Diabetes Sci Technol. 2016 May 3;10(3):679-88. doi: 10.1177/1932296816629982. Print 2016 May.

Abstract

BACKGROUND

Orthogonal redundancy for glucose sensing (multiple sensing elements utilizing distinct methodologies) may enhance performance compared to nonredundant sensors, and to sensors with multiple elements utilizing the same technology (simple redundancy). We compared the performance of a prototype orthogonal redundant sensor (ORS) combining optical fluorescence and redundant electrochemical sensing via a single insertion platform to an electrochemical simple redundant sensor (SRS).

METHODS

Twenty-one adults with type 1 diabetes wore an ORS and an SRS concurrently for 7 days. Following sensor insertion, and on Day 4 with a standardized meal, frequent venous samples were collected for reference glucose measurement (laboratory [YSI] and meter) over 3 and 4 hours, respectively. Between study visits reference capillary blood glucose testing was undertaken. Sensor data were processed prospectively.

RESULTS

ORS mean absolute relative difference (MARD) was (mean ± SD) 10.5 ± 13.2% versus SRS 11.0 ± 10.4% (P = .34). ORS values in Clarke error grid zones A and A+B were 88.1% and 97.6%, respectively, versus SRS 86.4% and 97.8%, respectively (P = .23 and P = .84). ORS Day 1 MARD (10.7 ± 10.7%) was superior to SRS (16.5 ± 13.4%; P < .0001), and comparable to ORS MARD for the week. ORS sensor survival (time-averaged mean) was 92.1% versus SRS 74.4% (P = .10). ORS display time (96.0 ± 5.8%) was equivalent to SRS (95.6 ± 8.9%; P = .87).

CONCLUSIONS

Combining simple and orthogonal sensor redundancy via a single insertion is feasible, with accuracy comparing favorably to current generation nonredundant sensors. Addition of an optical component potentially improves sensor reliability compared to electrochemical sensing alone. Further improvement in optical sensing performance is required prior to clinical application.

摘要

背景

与非冗余传感器以及采用相同技术的多元件传感器(简单冗余)相比,用于葡萄糖传感的正交冗余(利用不同方法的多个传感元件)可能会提高性能。我们将通过单个插入平台结合光学荧光和冗余电化学传感的原型正交冗余传感器(ORS)与电化学简单冗余传感器(SRS)的性能进行了比较。

方法

21名1型糖尿病成年患者同时佩戴ORS和SRS 7天。在传感器插入后,以及在第4天进食标准化餐食时,分别在3小时和4小时内采集频繁的静脉样本用于参考血糖测量(实验室[YSI]和血糖仪)。在研究访视期间进行参考毛细血管血糖检测。对传感器数据进行前瞻性处理。

结果

ORS的平均绝对相对差异(MARD)为(均值±标准差)10.5±13.2%,而SRS为11.0±10.4%(P = 0.34)。ORS在克拉克误差网格A区和A + B区的值分别为88.1%和97.6%,而SRS分别为86.4%和97.8%(P = 0.23和P = 0.84)。ORS第1天的MARD(10.7±10.7%)优于SRS(16.5±13.4%;P < 0.0001),且与ORS一周的MARD相当。ORS传感器存活率(时间平均均值)为92.1%,而SRS为74.4%(P = 0.10)。ORS显示时间(96.0±5.8%)与SRS相当(95.6±8.9%;P = 0.87)。

结论

通过单次插入结合简单和正交传感器冗余是可行的,其准确性优于当前一代非冗余传感器。与单独的电化学传感相比,添加光学组件可能会提高传感器的可靠性。在临床应用之前,需要进一步提高光学传感性能。

相似文献

1
Feasibility of an Orthogonal Redundant Sensor incorporating Optical plus Redundant Electrochemical Glucose Sensing.
J Diabetes Sci Technol. 2016 May 3;10(3):679-88. doi: 10.1177/1932296816629982. Print 2016 May.
2
Redundancy in Glucose Sensing: Enhanced Accuracy and Reliability of an Electrochemical Redundant Sensor for Continuous Glucose Monitoring.
J Diabetes Sci Technol. 2016 May 3;10(3):669-78. doi: 10.1177/1932296815612096. Print 2016 May.
3
Continuous glucose monitoring in subcutaneous tissue using factory-calibrated sensors: a pilot study.
Diabetes Technol Ther. 2010 Aug;12(8):591-7. doi: 10.1089/dia.2010.0051.
5
A Prospective Multicenter Evaluation of the Accuracy of a Novel Implanted Continuous Glucose Sensor: PRECISE II.
Diabetes Technol Ther. 2018 Mar;20(3):197-206. doi: 10.1089/dia.2017.0142. Epub 2018 Jan 30.
6
Accuracy of FreeStyle Libre in Adults with Type 1 Diabetes: The Effect of Sensor Age.
Diabetes Technol Ther. 2020 Mar;22(3):203-207. doi: 10.1089/dia.2019.0262. Epub 2020 Jan 23.
7
Accuracy of a Fourth-Generation Continuous Glucose Monitoring System in Children and Adolescents with Type 1 Diabetes.
Diabetes Technol Ther. 2018 Sep;20(9):576-584. doi: 10.1089/dia.2018.0109. Epub 2018 Jul 31.
9
Influence of time point of calibration on accuracy of continuous glucose monitoring in individuals with type 1 diabetes.
Diabetes Technol Ther. 2012 Jul;14(7):583-8. doi: 10.1089/dia.2011.0271. Epub 2012 Apr 18.
10
Glucose Sensor Accuracy After Subcutaneous Glucagon Injections Near to Sensor Site.
Diabetes Technol Ther. 2020 Feb;22(2):131-135. doi: 10.1089/dia.2019.0278. Epub 2019 Dec 30.

引用本文的文献

1
Prototype analysis of a low-power, small-scale wearable medical device.
J Electr Bioimpedance. 2025 Jan 4;15(1):169-176. doi: 10.2478/joeb-2024-0020. eCollection 2024 Jan.
2
Combining an Electrochemical Continuous Glucose Sensor With an Insulin Delivery Cannula: A Feasibility Study.
J Diabetes Sci Technol. 2024 Nov;18(6):1273-1280. doi: 10.1177/19322968241236771. Epub 2024 Mar 16.
3
Clinical Performance Evaluation of Continuous Glucose Monitoring Systems: A Scoping Review and Recommendations for Reporting.
J Diabetes Sci Technol. 2023 Nov;17(6):1506-1526. doi: 10.1177/19322968231190941. Epub 2023 Aug 20.
4
Human-in-the-Loop Insulin Dosing.
J Diabetes Sci Technol. 2021 May;15(3):699-704. doi: 10.1177/1932296819891177. Epub 2019 Dec 4.
5
Modeling the Error of the Medtronic Paradigm Veo Enlite Glucose Sensor.
Sensors (Basel). 2017 Jun 12;17(6):1361. doi: 10.3390/s17061361.
6
Moving Toward a Unified Platform for Insulin Delivery and Sensing of Inputs Relevant to an Artificial Pancreas.
J Diabetes Sci Technol. 2017 Mar;11(2):308-314. doi: 10.1177/1932296816682762. Epub 2016 Dec 13.

本文引用的文献

1
Redundancy in Glucose Sensing: Enhanced Accuracy and Reliability of an Electrochemical Redundant Sensor for Continuous Glucose Monitoring.
J Diabetes Sci Technol. 2016 May 3;10(3):669-78. doi: 10.1177/1932296815612096. Print 2016 May.
2
Use of an Intravascular Fluorescent Continuous Glucose Sensor in ICU Patients.
J Diabetes Sci Technol. 2015 Jul;9(4):762-70. doi: 10.1177/1932296815585872. Epub 2015 May 12.
3
Clinical accuracy of a continuous glucose monitoring system with an advanced algorithm.
J Diabetes Sci Technol. 2015 Mar;9(2):209-14. doi: 10.1177/1932296814559746. Epub 2014 Nov 3.
4
A comparative effectiveness analysis of three continuous glucose monitors: the Navigator, G4 Platinum, and Enlite.
J Diabetes Sci Technol. 2014 Jul;8(4):699-708. doi: 10.1177/1932296814532203. Epub 2014 Apr 21.
5
The artificial pancreas: current status and future prospects in the management of diabetes.
Ann N Y Acad Sci. 2014 Apr;1311:102-23. doi: 10.1111/nyas.12431.
6
Evaluation of 12 blood glucose monitoring systems for self-testing: system accuracy and measurement reproducibility.
Diabetes Technol Ther. 2014 Feb;16(2):113-22. doi: 10.1089/dia.2013.0208. Epub 2013 Nov 8.
7
A new-generation continuous glucose monitoring system: improved accuracy and reliability compared with a previous-generation system.
Diabetes Technol Ther. 2013 Oct;15(10):881-8. doi: 10.1089/dia.2013.0077. Epub 2013 Jun 18.
8
9
Overview of fluorescence glucose sensing: a technology with a bright future.
J Diabetes Sci Technol. 2012 Nov 1;6(6):1242-50. doi: 10.1177/193229681200600602.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验