Suppr超能文献

揭示钯催化杂环分子的有氧 C-H 功能化中克服“杂原子问题”的秘密:DFT 机理研究。

Unveiling Secrets of Overcoming the "Heteroatom Problem" in Palladium-Catalyzed Aerobic C-H Functionalization of Heterocycles: A DFT Mechanistic Study.

机构信息

School of Chemistry and Chemical Engineering, University of the Chinese Academy of Sciences , Beijing 100049, China.

Department of Chemistry, School of Science, Tianjin University , Tianjin 300072, China.

出版信息

J Am Chem Soc. 2016 Mar 2;138(8):2712-23. doi: 10.1021/jacs.5b12112. Epub 2016 Feb 17.

Abstract

Directed C-H functionalization of heterocycles through an exocyclic directing group (DG) is challenging due to the interference of the endocyclic heteroatom(s). Recently, the "heteroatom problem" was circumvented with the development of the protection-free Pd-catalyzed aerobic C-H functionalization of heterocycles guided by an exocyclic CONHOMe DG. We herein provide DFT mechanistic insights to facilitate the expansion of the strategy. The transformation proceeds as follows. First, the Pd2(dba)3 precursor interacts with t-BuNC (L, one of the substrates) and O2 to form the L2Pd(II)-η(2)-O2 peroxopalladium(II) species that can selectively oxidize N-methoxy amide (e.g., PyCONHOMe) substrate, giving an active L2Pd(II)X2 (X = PyCONOMe) species and releasing H2O2. After t-BuNC ligand migratory insertion followed by a 1,3-acyl migration and association with another t-BuNC, L2Pd(II)X2 converts to a more stable C-amidinyl L2Pd(II)XX' (X' = PyCON(t-Bu)C═NOMe) species. Finally, L2Pd(II)XX' undergoes C-H activation and C-C reductive elimination, affording the product. The C-H activation is the rate-determining step. The success of the strategy has three origins: (i) the N-methoxy amide DG can be easily oxidized in situ to generate the active L2Pd(II)X2 species via the oxidase pathway, thus preventing the destructive oxygenase pathway leading to stable t-BuNCO or the O-bridged dimeric Pd(II) species. The methoxy group in this amide DG greatly facilitates the oxidase pathway, and the tautomerization of N-methoxy amide to its imidic acid tautomer makes the oxidation of the substrate even easier. (ii) The X group in L2Pd(II)X2 can serve as an internal base to promote the C-H activation via CMD (concerted metalation-deprotonation) mechanism. (iii) The strong coordination ability of t-BuNC substrate/ligand suppresses the conventional cyclopalladation pathway enabled by the coordination of an endocyclic heteroatom to the Pd-center.

摘要

通过外环导向基团 (DG) 定向杂环的 C-H 功能化具有挑战性,这是由于中环杂原子的干扰。最近,通过开发无保护的 Pd 催化有氧杂环 C-H 功能化反应,克服了“杂原子问题”,该反应由外环 CONHOMe DG 引导。我们在此提供 DFT 机理见解,以促进该策略的扩展。该转化如下进行。首先,Pd2(dba)3 前体与 t-BuNC(L,其中一种底物)和 O2 相互作用,形成 L2Pd(II)-η(2)-O2 过氧钯 (II) 物种,该物种可以选择性氧化 N-甲氧基酰胺(例如 PyCONHOMe)底物,生成活性 L2Pd(II)X2(X = PyCONOMe)物种并释放 H2O2。在 t-BuNC 配体迁移插入后,经过 1,3-酰基迁移和与另一个 t-BuNC 缔合后,L2Pd(II)X2 转化为更稳定的 C-酰胺基 L2Pd(II)XX'(X' = PyCON(t-Bu)C═NOMe)物种。最后,L2Pd(II)XX' 经历 C-H 活化和 C-C 还原消除,得到产物。C-H 活化是速率决定步骤。该策略的成功有三个原因:(i) N-甲氧基酰胺 DG 可以很容易地原位氧化生成活性 L2Pd(II)X2 物种,通过氧化酶途径,从而防止导致稳定的 t-BuNCO 或 O-桥联二价钯 (II) 物种的破坏性加氧酶途径。酰胺 DG 中的甲氧基极大地促进了氧化酶途径,并且 N-甲氧基酰胺向其亚氨酸互变异构体的互变异构化使得底物的氧化更加容易。(ii) L2Pd(II)X2 中的 X 基团可以作为内部碱,通过 CMD(协同金属化-去质子化)机制促进 C-H 活化。(iii) t-BuNC 底物/配体的强配位能力抑制了由 Pd 中心中环杂原子配位引发的常规环钯化途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验