Guo Jiandong, Deng Xi, Song Chunyu, Lu Yu, Qu Shuanglin, Dang Yanfeng, Wang Zhi-Xiang
School of Chemistry and Chemical Engineering , University of the Chinese Academy of Sciences , Beijing 100049 , China . Email:
Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072 , China.
Chem Sci. 2017 Mar 1;8(3):2413-2425. doi: 10.1039/c6sc04456e. Epub 2016 Dec 22.
Early transition metals (TMs), such as titanium, generally resist undergoing reductive elimination to form C-X bonds due to their weak electronegativity. By analyzing the mechanism of the titanium-catalyzed synthesis of pyrroles from alkynes and diazenes, the present study revealed that titanium is able to promote C-N bond formation an unconventional elimination pathway, passing through a comparatively stable masked Ti complex (, ) rather than pyrrole directly. The formation of originates from the bilateral donation and back-donation between Ti and the pyrrole ligand. Formally, it could be considered that the two electrons resulting from the unconventional reductive elimination are temporarily buffered by back-donation to a symmetry-allowed unoccupied π-orbital of the pyrrole ring in rather than becoming a lone pair on a Ti center as adopted in the catalysis of late TMs. Because of its stability, requires additional oxidation by diazene to liberate pyrrole. The triplet counterpart ( ) of is more stable than , but the elimination is unlikely to reach , because the process is spin-forbidden and the spin-orbit coupling is weak. Alternatively, one may consider the forming pyrrole in as a redox-active ligand, reserving the two electrons resulting from the formal reductive elimination and then releasing the electrons when is oxidized by diazene. These insights allow us to propose the conditions for early TMs to undergo a similar elimination, whereby the forming product will have symmetry-allowed frontier molecular orbitals to form donation and back-donation bonding with a TM center and a substrate possessing a comparatively strong oxidizing ability to oxidize an -like intermediate for product release. These insights may provide another way of constructing C-X bonds through a similar reductive elimination pathway, using early TM catalysts.
早期过渡金属(TMs),如钛,由于其电负性较弱,通常难以通过还原消除反应形成碳-卤键(C-X键)。通过分析钛催化炔烃与重氮化合物合成吡咯的机理,本研究发现钛能够通过一条非常规的消除途径促进碳-氮键(C-N键)的形成,该途径经过一个相对稳定的掩蔽钛配合物(此处可能有具体结构但未给出),而不是直接生成吡咯。该配合物的形成源于钛与吡咯配体之间的双向给予和反馈。形式上,可以认为非常规还原消除产生的两个电子通过反馈暂时缓冲到吡咯环的一个对称允许的未占据π轨道中,而不是像晚期过渡金属催化那样成为钛中心上的孤对电子。由于其稳定性,该配合物需要重氮化合物进行额外氧化才能释放出吡咯。该配合物的三线态对应物比其基态更稳定,但消除反应不太可能达到三线态,因为该过程是自旋禁阻的且自旋轨道耦合较弱。或者,可以认为在该配合物中形成的吡咯是一种氧化还原活性配体,保留形式上还原消除产生的两个电子,然后在该配合物被重氮化合物氧化时释放这些电子。这些见解使我们能够提出早期过渡金属进行类似消除反应的条件,即形成的产物将具有对称允许的前沿分子轨道,以便与过渡金属中心和具有较强氧化能力的底物形成给予和反馈键合,从而氧化类似该配合物的中间体以释放产物。这些见解可能为使用早期过渡金属催化剂通过类似的还原消除途径构建碳-卤键提供另一种方法。