Zabihi Fatemeh, Ahmadian-Yazdi Mohammad-Reza, Eslamian Morteza
University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai, 200240, China.
Nanoscale Res Lett. 2016 Dec;11(1):71. doi: 10.1186/s11671-016-1259-2. Epub 2016 Feb 5.
In this paper, a scalable and fast process is developed and employed for the fabrication of the perovskite light harvesting layer in inverted planar heterojunction solar cell (FTO/PEDOT:PSS/CH3NH3PbI3-x Cl x /PCBM/Al). Perovskite precursor solutions are sprayed onto an ultrasonically vibrating substrate in two sequential steps via a process herein termed as the two-step sequential substrate vibration-assisted spray coating (2S-SVASC). The gentle imposed ultrasonic vibration on the substrate promotes droplet spreading and coalescence, surface wetting, evaporation, mixing of reagents, and uniform growth of perovskite nanocrystals. The role of the substrate temperature, substrate vibration intensity, and the time interval between the two sequential sprays are studied on the roughness, coverage, and crystalline structure of perovskite thin films. We demonstrate that a combination of a long time interval between spraying of precursor solutions (15 min), a high substrate temperature (120 °C), and a mild substrate vibration power (5 W) results in a favorable morphology and surface quality. The characteristics and performance of prepared perovskite thin films made via the 2S-SVASC technique are compared with those of the co-sprayed perovskite thin films. The maximum power conversion efficiency of 5.08 % on a 0.3-cm(2) active area is obtained for the device made via the scalable 2S-SVASC technique.
在本文中,开发并采用了一种可扩展且快速的工艺来制备倒置平面异质结太阳能电池(FTO/PEDOT:PSS/CH3NH3PbI3-xClx/PCBM/Al)中的钙钛矿光吸收层。通过本文称为两步连续基板振动辅助喷涂(2S-SVASC)的工艺,分两步将钙钛矿前驱体溶液喷涂到超声振动的基板上。施加在基板上的温和超声振动促进了液滴的铺展和聚结、表面润湿、蒸发、试剂混合以及钙钛矿纳米晶体的均匀生长。研究了基板温度、基板振动强度以及两次连续喷涂之间的时间间隔对钙钛矿薄膜的粗糙度、覆盖率和晶体结构的影响。我们证明,前驱体溶液喷涂之间较长的时间间隔(15分钟)、较高的基板温度(120°C)和适度的基板振动功率(5W)相结合,可产生良好的形貌和表面质量。将通过2S-SVASC技术制备的钙钛矿薄膜的特性和性能与共喷涂钙钛矿薄膜的特性和性能进行了比较。采用可扩展的2S-SVASC技术制备的器件在0.3平方厘米的有源面积上获得了5.08%的最大功率转换效率。