Suppr超能文献

使用自动视频处理测量元素时间和占空比。

Measuring elemental time and duty cycle using automated video processing.

作者信息

Akkas Oguz, Lee Cheng-Hsien, Hu Yu Hen, Yen Thomas Y, Radwin Robert G

机构信息

a Department of Industrial and Systems Engineering , University of Wisconsin-Madison , Madison , WI , USA.

b Department of Electrical and Computer Engineering , University of Wisconsin-Madison , Madison , WI , USA.

出版信息

Ergonomics. 2016 Nov;59(11):1514-1525. doi: 10.1080/00140139.2016.1146347. Epub 2016 Mar 2.

Abstract

A marker-less 2D video algorithm measured hand kinematics (location, velocity and acceleration) in a paced repetitive laboratory task for varying hand activity levels (HAL). The decision tree (DT) algorithm identified the trajectory of the hand using spatiotemporal relationships during the exertion and rest states. The feature vector training (FVT) method utilised the k-nearest neighbourhood classifier, trained using a set of samples or the first cycle. The average duty cycle (DC) error using the DT algorithm was 2.7%. The FVT algorithm had an average 3.3% error when trained using the first cycle sample of each repetitive task, and had a 2.8% average error when trained using several representative repetitive cycles. Error for HAL was 0.1 for both algorithms, which was considered negligible. Elemental time, stratified by task and subject, were not statistically different from ground truth (p < 0.05). Both algorithms performed well for automatically measuring elapsed time, DC and HAL. Practitioner Summary: A completely automated approach for measuring elapsed time and DC was developed using marker-less video tracking and the tracked kinematic record. Such an approach is automatic, repeatable, objective and unobtrusive, and is suitable for evaluating repetitive exertions, muscle fatigue and manual tasks.

摘要

一种无标记二维视频算法在有节奏的重复性实验室任务中测量了不同手部活动水平(HAL)下的手部运动学(位置、速度和加速度)。决策树(DT)算法在用力和休息状态期间利用时空关系识别手部轨迹。特征向量训练(FVT)方法使用k近邻分类器,通过一组样本或第一个周期进行训练。使用DT算法的平均占空比(DC)误差为2.7%。当使用每个重复性任务的第一个周期样本进行训练时,FVT算法的平均误差为3.3%,而在使用几个代表性的重复周期进行训练时,平均误差为2.8%。两种算法的HAL误差均为0.1,可忽略不计。按任务和受试者分层的基本时间与实际情况在统计学上无差异(p < 0.05)。两种算法在自动测量经过时间、DC和HAL方面均表现良好。从业者总结:利用无标记视频跟踪和跟踪的运动学记录开发了一种完全自动化的方法来测量经过时间和DC。这种方法具有自动、可重复、客观和不引人注意的特点,适用于评估重复性用力、肌肉疲劳和手工任务。

相似文献

1
Measuring elemental time and duty cycle using automated video processing.
Ergonomics. 2016 Nov;59(11):1514-1525. doi: 10.1080/00140139.2016.1146347. Epub 2016 Mar 2.
2
Measuring exertion time, duty cycle and hand activity level for industrial tasks using computer vision.
Ergonomics. 2017 Dec;60(12):1730-1738. doi: 10.1080/00140139.2017.1346208. Epub 2017 Jul 6.
3
Automated video exposure assessment of repetitive hand activity level for a load transfer task.
Hum Factors. 2013 Apr;55(2):298-308. doi: 10.1177/0018720812458121.
4
The accuracy of conventional 2D video for quantifying upper limb kinematics in repetitive motion occupational tasks.
Ergonomics. 2015;58(12):2057-66. doi: 10.1080/00140139.2015.1051594. Epub 2015 Jun 18.
5
Visualizing stressful aspects of repetitive motion tasks and opportunities for ergonomic improvements using computer vision.
Appl Ergon. 2017 Nov;65:461-472. doi: 10.1016/j.apergo.2017.02.020. Epub 2017 Mar 9.
6
Predicting Sagittal Plane Lifting Postures From Image Bounding Box Dimensions.
Hum Factors. 2019 Feb;61(1):64-77. doi: 10.1177/0018720818791367. Epub 2018 Aug 9.
7
A hand speed-duty cycle equation for estimating the ACGIH hand activity level rating.
Ergonomics. 2015;58(2):184-94. doi: 10.1080/00140139.2014.966155. Epub 2014 Oct 24.
8
Comparison of the observer, single-frame video and computer vision hand activity levels.
Ergonomics. 2023 Aug;66(8):1132-1141. doi: 10.1080/00140139.2022.2136407. Epub 2022 Oct 26.
9
A stochastic algorithm for automatic hand pose and motion estimation.
Med Biol Eng Comput. 2017 Dec;55(12):2197-2208. doi: 10.1007/s11517-017-1654-6. Epub 2017 Jun 8.
10
A marker-less technique for measuring kinematics in the operating room.
Surgery. 2016 Nov;160(5):1400-1413. doi: 10.1016/j.surg.2016.05.004. Epub 2016 Jun 21.

引用本文的文献

1
Comparison of the observer, single-frame video and computer vision hand activity levels.
Ergonomics. 2023 Aug;66(8):1132-1141. doi: 10.1080/00140139.2022.2136407. Epub 2022 Oct 26.

本文引用的文献

1
The accuracy of conventional 2D video for quantifying upper limb kinematics in repetitive motion occupational tasks.
Ergonomics. 2015;58(12):2057-66. doi: 10.1080/00140139.2015.1051594. Epub 2015 Jun 18.
2
A frequency-duty cycle equation for the ACGIH hand activity level.
Ergonomics. 2015;58(2):173-83. doi: 10.1080/00140139.2014.966154. Epub 2014 Oct 24.
3
A hand speed-duty cycle equation for estimating the ACGIH hand activity level rating.
Ergonomics. 2015;58(2):184-94. doi: 10.1080/00140139.2014.966155. Epub 2014 Oct 24.
4
Biomechanical risk factors for carpal tunnel syndrome: a pooled study of 2474 workers.
Occup Environ Med. 2015 Jan;72(1):33-41. doi: 10.1136/oemed-2014-102378. Epub 2014 Oct 16.
6
Pooling job physical exposure data from multiple independent studies in a consortium study of carpal tunnel syndrome.
Ergonomics. 2013;56(6):1021-37. doi: 10.1080/00140139.2013.797112. Epub 2013 May 22.
7
Automated video exposure assessment of repetitive hand activity level for a load transfer task.
Hum Factors. 2013 Apr;55(2):298-308. doi: 10.1177/0018720812458121.
8
Predicting maximum acceptable efforts for repetitive tasks: an equation based on duty cycle.
Hum Factors. 2012 Apr;54(2):175-88. doi: 10.1177/0018720811424269.
9
Time--a key issue for musculoskeletal health and manufacturing.
Appl Ergon. 2007 Nov;38(6):733-44. doi: 10.1016/j.apergo.2006.12.003. Epub 2007 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验