Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland.
Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland; BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
Neuron. 2016 Feb 17;89(4):814-28. doi: 10.1016/j.neuron.2016.01.009. Epub 2016 Feb 4.
Epidural electrical stimulation of lumbar segments facilitates standing and walking in animal models and humans with spinal cord injury. However, the mechanisms through which this neuromodulation therapy engages spinal circuits remain enigmatic. Using computer simulations and behavioral experiments, we provide evidence that epidural electrical stimulation interacts with muscle spindle feedback circuits to modulate muscle activity during locomotion. Hypothesis-driven strategies emerging from simulations steered the design of stimulation protocols that adjust bilateral hindlimb kinematics throughout gait execution. These stimulation strategies corrected subject-specific gait and balance deficits in rats with incomplete and complete spinal cord injury. The conservation of muscle spindle feedback circuits across mammals suggests that the same mechanisms may facilitate motor control in humans. These results provide a conceptual framework to improve stimulation protocols for clinical applications.
硬膜外电刺激腰椎节段有助于动物模型和脊髓损伤患者站立和行走。然而,这种神经调节疗法通过何种机制作用于脊髓回路仍然是个谜。我们使用计算机模拟和行为实验提供证据表明,硬膜外电刺激与肌梭反馈回路相互作用,从而调节运动过程中的肌肉活动。模拟中出现的基于假设的策略指导了刺激方案的设计,这些方案在整个步态执行过程中调整双侧后肢运动学。这些刺激策略纠正了不完全和完全脊髓损伤大鼠的特定于个体的步态和平衡缺陷。哺乳动物中肌梭反馈回路的保守性表明,相同的机制可能有助于人类的运动控制。这些结果为改善临床应用中的刺激方案提供了一个概念框架。