The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy, Translational Neural Engineering Laboratory, Center for Neuroprosthetics and Institute for Bioengineering, School of Engineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland, International Paraplegic Foundation Chair in Spinal Cord Repair, Center for Neuroprosthetics and Brain-Mind Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland, and Pavlov Institute of Physiology, St. Petersburg, Russia.
J Neurosci. 2013 Dec 4;33(49):19326-40. doi: 10.1523/JNEUROSCI.1688-13.2013.
Epidural electrical stimulation (EES) of lumbosacral segments can restore a range of movements after spinal cord injury. However, the mechanisms and neural structures through which EES facilitates movement execution remain unclear. Here, we designed a computational model and performed in vivo experiments to investigate the type of fibers, neurons, and circuits recruited in response to EES. We first developed a realistic finite element computer model of rat lumbosacral segments to identify the currents generated by EES. To evaluate the impact of these currents on sensorimotor circuits, we coupled this model with an anatomically realistic axon-cable model of motoneurons, interneurons, and myelinated afferent fibers for antagonistic ankle muscles. Comparisons between computer simulations and experiments revealed the ability of the model to predict EES-evoked motor responses over multiple intensities and locations. Analysis of the recruited neural structures revealed the lack of direct influence of EES on motoneurons and interneurons. Simulations and pharmacological experiments demonstrated that EES engages spinal circuits trans-synaptically through the recruitment of myelinated afferent fibers. The model also predicted the capacity of spatially distinct EES to modulate side-specific limb movements and, to a lesser extent, extension versus flexion. These predictions were confirmed during standing and walking enabled by EES in spinal rats. These combined results provide a mechanistic framework for the design of spinal neuroprosthetic systems to improve standing and walking after neurological disorders.
硬膜外电刺激(EES)腰骶段可以恢复脊髓损伤后的运动范围。然而,EES 促进运动执行的机制和神经结构仍不清楚。在这里,我们设计了一个计算模型并进行了体内实验,以研究对 EES 有反应的纤维、神经元和回路的类型。我们首先开发了大鼠腰骶段的真实有限元计算机模型,以确定 EES 产生的电流。为了评估这些电流对感觉运动回路的影响,我们将该模型与拮抗踝肌的运动神经元、中间神经元和有髓传入纤维的解剖逼真的轴突-电缆模型耦合。计算机模拟和实验之间的比较表明,该模型能够预测多个强度和位置的 EES 诱发的运动反应。对募集的神经结构的分析表明,EES 对运动神经元和中间神经元没有直接影响。模拟和药理学实验表明,EES 通过募集有髓传入纤维,经突触传递参与脊髓回路。该模型还预测了空间上不同的 EES 调节侧特定肢体运动的能力,以及在一定程度上调节伸展与弯曲。在脊髓大鼠的 EES 辅助站立和行走过程中,这些预测得到了证实。这些综合结果为设计用于改善神经障碍后站立和行走的脊髓神经假体系统提供了一个机械框架。