King M A, Ganley I G, Flemington V
AstraZeneca Oncology, Alderley Park, Macclesfield, Cheshire, UK.
MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK.
Oncogene. 2016 Aug 25;35(34):4518-28. doi: 10.1038/onc.2015.511. Epub 2016 Feb 8.
Mutations to fibroblast growth factor receptor 3 (FGFR3) and phosphatase and tensin homologue (PTEN) signalling pathway components (for example, PTEN loss, PIK3CA, AKT1, TSC1/2) are common in bladder cancer, yet small-molecule inhibitors of these nodes (FGFR/PTENi) show only modest activity in preclinical models. As activation of autophagy is proposed to promote survival under FGFR/PTENi, we have investigated this relationship in a panel of 18 genetically diverse bladder cell lines. We found that autophagy inhibition does not sensitise bladder cell lines to FGFR/PTENi, but newly identify an autophagy-independent cell death synergy in FGFR3-mutant cell lines between mTOR (mammalian target of rapamycin) pathway inhibitors and chloroquine (CQ)-an anti-malarial drug used as a cancer therapy adjuvant in over 30 clinical trials. The mechanism of synergy is consistent with lysosomal cell death (LCD), including cathepsin-driven caspase activation, and correlates with suppression of cSREBP1 and cholesterol biosynthesis in sensitive cell lines. Remarkably, loss of viability can be rescued by saturating cellular membranes with cholesterol or recapitulated by statin-mediated inhibition, or small interfering RNA knockdown, of enzymes regulating cholesterol metabolism. Modulation of CQ-induced cell death by atorvastatin and cholesterol is reproduced across numerous cell lines, confirming a novel and fundamental role for cholesterol biosynthesis in regulating LCD. Thus, we have catalogued the molecular events underlying cell death induced by CQ in combination with an anticancer therapeutic. Moreover, by revealing a hitherto unknown aspect of lysosomal biology under stress, we propose that suppression of cholesterol metabolism in cancer cells should elicit synergy with CQ and define a novel approach to future cancer treatments.
成纤维细胞生长因子受体3(FGFR3)和磷酸酶及张力蛋白同源物(PTEN)信号通路成分(例如,PTEN缺失、PIK3CA、AKT1、TSC1/2)的突变在膀胱癌中很常见,但这些节点的小分子抑制剂(FGFR/PTENi)在临床前模型中仅表现出适度的活性。由于自噬的激活被认为可促进FGFR/PTENi作用下的细胞存活,我们在一组18种基因不同的膀胱癌细胞系中研究了这种关系。我们发现自噬抑制并未使膀胱癌细胞系对FGFR/PTENi敏感,但新发现了在FGFR3突变细胞系中,雷帕霉素靶蛋白(mTOR)通路抑制剂与氯喹(CQ,一种在30多项临床试验中用作癌症治疗辅助药物的抗疟药)之间存在自噬非依赖性的细胞死亡协同作用。协同作用机制与溶酶体细胞死亡(LCD)一致,包括组织蛋白酶驱动的半胱天冬酶激活,并且与敏感细胞系中cSREBP1的抑制和胆固醇生物合成相关。值得注意的是,通过用胆固醇使细胞膜饱和可挽救细胞活力丧失,或者通过他汀类药物介导的对调节胆固醇代谢的酶的抑制或小干扰RNA敲低来重现这种情况。阿托伐他汀和胆固醇对CQ诱导的细胞死亡的调节在众多细胞系中均有重现,证实了胆固醇生物合成在调节LCD中的新的基本作用。因此,我们已经梳理了CQ联合抗癌治疗诱导细胞死亡的分子事件。此外,通过揭示应激状态下溶酶体生物学一个迄今未知的方面,我们提出抑制癌细胞中的胆固醇代谢应与CQ产生协同作用,并定义了一种未来癌症治疗的新方法。