Shimazaki Takuya
Department of Physiology, Keio University School of Medicine, Tokyo, Japan.
Keio J Med. 2016;65(1):1-15. doi: 10.2302/kjm.2015-0005-IR. Epub 2016 Feb 5.
Natural recovery from disease and damage in the adult mammalian central nervous system (CNS) is limited compared with that in lower vertebrate species, including fish and salamanders. Species-specific differences in the plasticity of the CNS reflect these differences in regenerative capacity. Despite numerous extensive studies in the field of CNS regeneration, our understanding of the molecular mechanisms determining the regenerative capacity of the CNS is still relatively poor. The discovery of adult neural stem cells (aNSCs) in mammals, including humans, in the early 1990s has opened up new possibilities for the treatment of CNS disorders via self-regeneration through the mobilization of these cells. However, we now know that aNSCs in mammals are not plastic enough to induce significant regeneration. In contrast, aNSCs in some regenerative species have been found to be as highly plastic as early embryonic neural stem cells (NSCs). We must expand our knowledge of NSCs and of regenerative processes in lower vertebrates in an effort to develop effective regenerative treatments for damaged CNS in humans.
与包括鱼类和蝾螈在内的低等脊椎动物相比,成年哺乳动物中枢神经系统(CNS)从疾病和损伤中自然恢复的能力有限。中枢神经系统可塑性的物种特异性差异反映了这些再生能力的差异。尽管在中枢神经系统再生领域进行了大量广泛的研究,但我们对决定中枢神经系统再生能力的分子机制的理解仍然相对匮乏。20世纪90年代初在包括人类在内的哺乳动物中发现成年神经干细胞(aNSC),为通过动员这些细胞进行自我再生来治疗中枢神经系统疾病开辟了新的可能性。然而,我们现在知道,哺乳动物中的成年神经干细胞可塑性不足,无法诱导显著的再生。相比之下,已发现一些具有再生能力物种中的成年神经干细胞与早期胚胎神经干细胞(NSC)一样具有高度可塑性。我们必须扩大对神经干细胞以及低等脊椎动物再生过程的认识,以便努力开发针对人类受损中枢神经系统的有效再生治疗方法。