Mancarella Francesco, Style Robert W, Wettlaufer John S
Nordic Institute for Theoretical Physics, Royal Institute of Technology and Stockholm University, SE-106 91 Stockholm, Sweden.
Soft Matter. 2016 Mar 14;12(10):2744-50. doi: 10.1039/c5sm03029c. Epub 2016 Feb 8.
In the dilute limit Eshelby's inclusion theory captures the behavior of a wide range of systems and properties. However, because Eshelby's approach neglects interfacial stress, it breaks down in soft materials as the inclusion size approaches the elastocapillarity length L≡γ/E. Here, we use a three-phase generalized self-consistent method to calculate the elastic moduli of composites comprised of an isotropic, linear-elastic compliant solid hosting a spatially random monodisperse distribution of spherical liquid droplets. As opposed to similar approaches, we explicitly capture the liquid-solid interfacial stress when it is treated as an isotropic, strain-independent surface tension. Within this framework, the composite stiffness depends solely on the ratio of the elastocapillarity length L to the inclusion radius R. Independent of inclusion volume fraction, we find that the composite is stiffened by the inclusions whenever R < 3L/2. Over the same range of parameters, we compare our results with alternative approaches (dilute and Mori-Tanaka theories that include surface tension). Our framework can be easily extended to calculate the composite properties of more general soft materials where surface tension plays a role.
在稀释极限下,埃舍尔比夹杂理论能够描述多种系统的行为和性质。然而,由于埃舍尔比的方法忽略了界面应力,当夹杂尺寸接近弹性毛细长度(L≡γ/E)时,该理论在软材料中失效。在此,我们使用三相广义自洽方法来计算由各向同性、线性弹性柔顺固体组成的复合材料的弹性模量,其中固体中含有空间随机分布的单分散球形液滴。与类似方法不同的是,当将液 - 固界面应力视为各向同性、与应变无关的表面张力时,我们明确考虑了该应力。在此框架内,复合材料的刚度仅取决于弹性毛细长度(L)与夹杂半径(R)的比值。与夹杂体积分数无关,我们发现当(R < 3L/2)时,夹杂会使复合材料变硬。在相同的参数范围内,我们将我们的结果与其他方法(包括表面张力的稀释理论和森 - 田中理论)进行了比较。我们的框架可以很容易地扩展,以计算表面张力起作用的更一般软材料的复合材料性质。