Fargue Sonia, Knight John, Holmes Ross P, Rumsby Gill, Danpure Christopher J
Department of Cell & Developmental Biology, University College London, London WC1E 6BT, UK; Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
Biochim Biophys Acta. 2016 Jun;1862(6):1055-62. doi: 10.1016/j.bbadis.2016.02.004. Epub 2016 Feb 6.
The hereditary kidney stone disease primary hyperoxaluria type 1 (PH1) is caused by a functional deficiency of the liver-specific, peroxisomal, pyridoxal-phosphate-dependent enzyme, alanine:glyoxylate aminotransferase (AGT). One third of PH1 patients, particularly those expressing the p.[(Pro11Leu; Gly170Arg; Ile340Met)] mutant allele, respond clinically to pharmacological doses of pyridoxine. To gain further insight into the metabolic effects of AGT dysfunction in PH1 and the effect of pyridoxine, we established an "indirect" glycolate cytotoxicity assay using CHO cells expressing glycolate oxidase (GO) and various normal and mutant forms of AGT. In cells expressing GO the great majority of glycolate was converted to oxalate and glyoxylate, with the latter causing the greater decrease in cell survival. Co-expression of normal AGTs and some, but not all, mutant AGT variants partially counteracted this cytotoxicity and led to decreased synthesis of oxalate and glyoxylate. Increasing the extracellular pyridoxine up to 0.3μM led to an increased metabolic effectiveness of normal AGTs and the AGT-Gly170Arg variant. The increased survival seen with AGT-Gly170Arg was paralleled by a 40% decrease in oxalate and glyoxylate levels. These data support the suggestion that the effectiveness of pharmacological doses of pyridoxine results from an improved metabolic effectiveness of AGT; that is the increased rate of transamination of glyoxylate to glycine. The indirect glycolate toxicity assay used in the present study has potential to be used in cell-based drug screening protocols to identify chemotherapeutics that might enhance or decrease the activity and metabolic effectiveness of AGT and GO, respectively, and be useful in the treatment of PH1.
遗传性肾结石疾病1型原发性高草酸尿症(PH1)是由肝脏特异性、过氧化物酶体、磷酸吡哆醛依赖性酶——丙氨酸:乙醛酸转氨酶(AGT)功能缺陷引起的。三分之一的PH1患者,尤其是那些表达p.[(Pro11Leu; Gly170Arg; Ile340Met)]突变等位基因的患者,对药理剂量的吡哆醇有临床反应。为了进一步深入了解PH1中AGT功能障碍的代谢影响以及吡哆醇的作用,我们建立了一种“间接”乙醇酸细胞毒性测定法,该方法使用表达乙醇酸氧化酶(GO)以及各种正常和突变形式AGT的CHO细胞。在表达GO的细胞中,绝大多数乙醇酸被转化为草酸盐和乙醛酸盐,后者导致细胞存活率下降幅度更大。正常AGT与部分(但不是全部)突变AGT变体的共表达部分抵消了这种细胞毒性,并导致草酸盐和乙醛酸盐的合成减少。将细胞外吡哆醇浓度提高到0.3μM会导致正常AGT和AGT-Gly170Arg变体的代谢效率提高。AGT-Gly170Arg导致的存活率提高与草酸盐和乙醛酸盐水平降低40%相对应。这些数据支持以下观点:药理剂量的吡哆醇的有效性源于AGT代谢效率的提高;也就是说,乙醛酸向甘氨酸的转氨速率增加。本研究中使用的间接乙醇酸毒性测定法有可能用于基于细胞的药物筛选方案,以识别可能分别增强或降低AGT和GO活性及代谢效率的化学治疗药物,并对PH1的治疗有用。