Miyata Non, Steffen Janos, Johnson Meghan E, Fargue Sonia, Danpure Christopher J, Koehler Carla M
Department of Chemistry and Biochemistry.
Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom.
Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14406-11. doi: 10.1073/pnas.1408401111. Epub 2014 Sep 18.
Primary hyperoxaluria 1 (PH1; Online Mendelian Inheritance in Man no. 259900), a typically lethal biochemical disorder, may be caused by the AGT(P11LG170R) allele in which the alanine:glyoxylate aminotransferase (AGT) enzyme is mistargeted from peroxisomes to mitochondria. AGT contains a C-terminal peroxisomal targeting sequence, but mutations generate an N-terminal mitochondrial targeting sequence that directs AGT from peroxisomes to mitochondria. Although AGT(P11LG170R) is functional, the enzyme must be in the peroxisome to detoxify glyoxylate by conversion to alanine; in disease, amassed glyoxylate in the peroxisome is transported to the cytosol and converted to oxalate by lactate dehydrogenase, leading to kidney failure. From a chemical genetic screen, we have identified small molecules that inhibit mitochondrial protein import. We tested whether one promising candidate, Food and Drug Administration (FDA)-approved dequalinium chloride (DECA), could restore proper peroxisomal trafficking of AGT(P11LG170R). Indeed, treatment with DECA inhibited AGT(P11LG170R) translocation into mitochondria and subsequently restored trafficking to peroxisomes. Previous studies have suggested that a mitochondrial uncoupler might work in a similar manner. Although the uncoupler carbonyl cyanide m-chlorophenyl hydrazone inhibited AGT(P11LG170R) import into mitochondria, AGT(P11LG170R) aggregated in the cytosol, and cells subsequently died. In a cellular model system that recapitulated oxalate accumulation, exposure to DECA reduced oxalate accumulation, similar to pyridoxine treatment that works in a small subset of PH1 patients. Moreover, treatment with both DECA and pyridoxine was additive in reducing oxalate levels. Thus, repurposing the FDA-approved DECA may be a pharmacologic strategy to treat PH1 patients with mutations in AGT because an additional 75 missense mutations in AGT may also result in mistrafficking.
原发性高草酸尿症1型(PH1;《人类孟德尔遗传在线》编号259900)是一种典型的致死性生化紊乱疾病,可能由AGT(P11LG170R)等位基因引起,在该等位基因中,丙氨酸:乙醛酸转氨酶(AGT)酶从过氧化物酶体错误定位到线粒体。AGT含有一个C末端过氧化物酶体靶向序列,但突变会产生一个N末端线粒体靶向序列,该序列将AGT从过氧化物酶体导向线粒体。尽管AGT(P11LG170R)具有功能,但该酶必须位于过氧化物酶体中才能通过转化为丙氨酸来解毒乙醛酸;在疾病中,过氧化物酶体中积累的乙醛酸被转运到细胞质中,并通过乳酸脱氢酶转化为草酸盐,导致肾衰竭。通过化学遗传学筛选,我们鉴定出了抑制线粒体蛋白导入的小分子。我们测试了一种有前景的候选药物,即美国食品药品监督管理局(FDA)批准的氯化喹吖啶(DECA),是否能恢复AGT(P11LG170R)正确的过氧化物酶体运输。事实上,用DECA处理可抑制AGT(P11LG170R)转运到线粒体中,并随后恢复其向过氧化物酶体的运输。先前的研究表明,线粒体解偶联剂可能以类似的方式起作用。尽管解偶联剂羰基氰化物间氯苯腙抑制了AGT(P11LG170R)导入线粒体,但AGT(P11LG170R)在细胞质中聚集,随后细胞死亡。在一个重现草酸盐积累的细胞模型系统中,与在一小部分PH1患者中起作用的吡哆醇治疗类似,暴露于DECA可减少草酸盐积累。此外,DECA和吡哆醇联合治疗在降低草酸盐水平方面具有相加作用。因此,重新利用FDA批准的DECA可能是一种治疗AGT基因突变的PH1患者的药理学策略,因为AGT中另外75个错义突变也可能导致运输错误。