Suppr超能文献

SenseWear® 臂带v5.2和v2.2用于估计能量消耗的有效性。

Validity of SenseWear® Armband v5.2 and v2.2 for estimating energy expenditure.

作者信息

Bhammar Dharini M, Sawyer Brandon J, Tucker Wesley J, Lee Jung-Min, Gaesser Glenn A

机构信息

a Exercise Science and Health Promotion, Healthy Lifestyles Research Center , Arizona State University , Phoenix , AZ , USA.

b Department of Exercise Physiology, College of Nursing and Health Sciences , Valdosta State University , Valdosta , GA , USA.

出版信息

J Sports Sci. 2016 Oct;34(19):1830-8. doi: 10.1080/02640414.2016.1140220. Epub 2016 Feb 8.

Abstract

We compared SenseWear Armband versions (v) 2.2 and 5.2 for estimating energy expenditure in healthy adults. Thirty-four adults (26 women), 30.1 ± 8.7 years old, performed two trials that included light-, moderate- and vigorous-intensity activities: (1) structured routine: seven activities performed for 8-min each, with 4-min of rest between activities; (2) semi-structured routine: 12 activities performed for 5-min each, with no rest between activities. Energy expenditure was measured by indirect calorimetry and predicted using SenseWear v2.2 and v5.2. Compared to indirect calorimetry (297.8 ± 54.2 kcal), the total energy expenditure was overestimated (P < 0.05) by both SenseWear v2.2 (355.6 ± 64.3 kcal) and v5.2 (342.6 ± 63.8 kcal) during the structured routine. During the semi-structured routine, the total energy expenditure for SenseWear v5.2 (275.2 ± 63.0 kcal) was not different than indirect calorimetry (262.8 ± 52.9 kcal), and both were lower (P < 0.05) than v2.2 (312.2 ± 74.5 kcal). The average mean absolute per cent error was lower for the SenseWear v5.2 than for v2.2 (P < 0.001). SenseWear v5.2 improved energy expenditure estimation for some activities (sweeping, loading/unloading boxes, walking), but produced larger errors for others (cycling, rowing). Although both algorithms overestimated energy expenditure as well as time spent in moderate-intensity physical activity (P < 0.05), v5.2 offered better estimates than v2.2.

摘要

我们比较了SenseWear臂带2.2版和5.2版在估计健康成年人能量消耗方面的表现。34名成年人(26名女性),年龄30.1±8.7岁,进行了两项试验,包括轻、中、高强度活动:(1)结构化日常活动:七项活动,每项进行8分钟,活动之间休息4分钟;(2)半结构化日常活动:12项活动,每项进行5分钟,活动之间不休息。通过间接测热法测量能量消耗,并使用SenseWear 2.2版和5.2版进行预测。与间接测热法(297.8±54.2千卡)相比,在结构化日常活动期间,SenseWear 2.2版(355.6±64.3千卡)和5.2版(342.6±63.8千卡)均高估了总能量消耗(P<0.05)。在半结构化日常活动期间,SenseWear 5.2版的总能量消耗(275.2±63.0千卡)与间接测热法(262.8±52.9千卡)没有差异,且两者均低于SenseWear 2.2版(312.2±74.5千卡)(P<0.05)。SenseWear 5.2版的平均平均绝对百分比误差低于2.2版(P<0.001)。SenseWear 5.2版在某些活动(扫地、装卸箱子、步行)中改善了能量消耗估计,但在其他活动(骑自行车、划船)中产生了更大的误差。尽管两种算法都高估了能量消耗以及中等强度身体活动所花费的时间(P<0.05),但5.2版比2.2版提供了更好的估计。

相似文献

1
Validity of SenseWear® Armband v5.2 and v2.2 for estimating energy expenditure.
J Sports Sci. 2016 Oct;34(19):1830-8. doi: 10.1080/02640414.2016.1140220. Epub 2016 Feb 8.
2
Evaluation of the SenseWear Pro Armband to assess energy expenditure during exercise.
Med Sci Sports Exerc. 2004 May;36(5):897-904. doi: 10.1249/01.mss.0000126805.32659.43.
3
Validation of the SenseWear mini armband in children during semi-structure activity settings.
J Sci Med Sport. 2016 Jan;19(1):41-5. doi: 10.1016/j.jsams.2014.10.004. Epub 2014 Oct 14.
4
Validity of the SenseWear® Armband to predict energy expenditure in pregnant women.
Med Sci Sports Exerc. 2012 Oct;44(10):2001-8. doi: 10.1249/MSS.0b013e31825ce76f.
5
Validation of the SenseWear Armband in different ambient temperatures.
J Sports Sci. 2015;33(10):1007-18. doi: 10.1080/02640414.2014.981846. Epub 2014 Dec 24.
6
Evaluation of the SenseWear Mini Armband to assess energy expenditure during pole walking.
Int J Sport Nutr Exerc Metab. 2014 Oct;24(5):565-9. doi: 10.1123/ijsnem.2014-0075.
10
Carrying loads: Validating a portable tri-axial accelerometer during frequent and brief physical activity.
J Sci Med Sport. 2017 Aug;20(8):771-776. doi: 10.1016/j.jsams.2017.01.236. Epub 2017 Jan 24.

引用本文的文献

1
Treadmill walking economy is not affected by body fat and body mass index in adults.
Physiol Rep. 2024 May;12(10):e16023. doi: 10.14814/phy2.16023.
2
Accuracy of the SenseWear Armband during Short Bouts of Exercise.
Sports (Basel). 2024 Mar 26;12(4):93. doi: 10.3390/sports12040093.
6
A Systematic Review and Meta-Analysis of Validation Studies Performed on Dietary Record Apps.
Adv Nutr. 2021 Dec 1;12(6):2321-2332. doi: 10.1093/advances/nmab058.
8
Sleep Deprivation and Physiological Responses. A Case Report.
J Funct Morphol Kinesiol. 2019 Apr 3;4(2):17. doi: 10.3390/jfmk4020017.
9
10
Optimal Estimate for Energy Requirements in Adult Patients With the m.3243A>G Mutation in Mitochondrial DNA.
JPEN J Parenter Enteral Nutr. 2021 Jan;45(1):158-164. doi: 10.1002/jpen.1965. Epub 2020 Aug 1.

本文引用的文献

1
Validity of a Multi-Sensor Armband for Estimating Energy Expenditure during Eighteen Different Activities.
J Obes Weight Loss Ther. 2012;2(7). doi: 10.4172/2165-7904.1000146. Epub 2012 Aug 29.
2
Validation of the SenseWear Armband in different ambient temperatures.
J Sports Sci. 2015;33(10):1007-18. doi: 10.1080/02640414.2014.981846. Epub 2014 Dec 24.
3
Validation of the SenseWear mini armband in children during semi-structure activity settings.
J Sci Med Sport. 2016 Jan;19(1):41-5. doi: 10.1016/j.jsams.2014.10.004. Epub 2014 Oct 14.
5
Validity of activity monitors in health and chronic disease: a systematic review.
Int J Behav Nutr Phys Act. 2012 Jul 9;9:84. doi: 10.1186/1479-5868-9-84.
6
Validity of the SenseWear® Armband to predict energy expenditure in pregnant women.
Med Sci Sports Exerc. 2012 Oct;44(10):2001-8. doi: 10.1249/MSS.0b013e31825ce76f.
7
Validation of the SenseWear armband in circuit resistance training with different loads.
Eur J Appl Physiol. 2012 Aug;112(8):3155-9. doi: 10.1007/s00421-011-2269-5. Epub 2011 Dec 6.
8
Accuracy of the SenseWear Armband™ during ergocycling.
Int J Sports Med. 2011 Oct;32(10):761-4. doi: 10.1055/s-0031-1279768. Epub 2011 Sep 12.
9
2011 Compendium of Physical Activities: a second update of codes and MET values.
Med Sci Sports Exerc. 2011 Aug;43(8):1575-81. doi: 10.1249/MSS.0b013e31821ece12.
10
Validation of the SenseWear Armband at high intensity exercise.
Eur J Appl Physiol. 2011 May;111(5):883-7. doi: 10.1007/s00421-010-1695-0. Epub 2010 Oct 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验