Suppr超能文献

基于键动力学的纤维组织损伤力学连续介质理论:在软骨组织工程中的应用

Continuum theory of fibrous tissue damage mechanics using bond kinetics: application to cartilage tissue engineering.

作者信息

Nims Robert J, Durney Krista M, Cigan Alexander D, Dusséaux Antoine, Hung Clark T, Ateshian Gerard A

机构信息

Department of Biomedical Engineering , Columbia University , 500 West 120th Street, MC4703, New York, NY 10027 , USA.

Department of Mechanical Engineering , Columbia University , 500 West 120th Street, MC4703, New York, NY 10027 , USA.

出版信息

Interface Focus. 2016 Feb 6;6(1):20150063. doi: 10.1098/rsfs.2015.0063.

Abstract

This study presents a damage mechanics framework that employs observable state variables to describe damage in isotropic or anisotropic fibrous tissues. In this mixture theory framework, damage is tracked by the mass fraction of bonds that have broken. Anisotropic damage is subsumed in the assumption that multiple bond species may coexist in a material, each having its own damage behaviour. This approach recovers the classical damage mechanics formulation for isotropic materials, but does not appeal to a tensorial damage measure for anisotropic materials. In contrast with the classical approach, the use of observable state variables for damage allows direct comparison of model predictions to experimental damage measures, such as biochemical assays or Raman spectroscopy. Investigations of damage in discrete fibre distributions demonstrate that the resilience to damage increases with the number of fibre bundles; idealizing fibrous tissues using continuous fibre distribution models precludes the modelling of damage. This damage framework was used to test and validate the hypothesis that growth of cartilage constructs can lead to damage of the synthesized collagen matrix due to excessive swelling caused by synthesized glycosaminoglycans. Therefore, alternative strategies must be implemented in tissue engineering studies to prevent collagen damage during the growth process.

摘要

本研究提出了一个损伤力学框架,该框架采用可观测状态变量来描述各向同性或各向异性纤维组织中的损伤。在这个混合物理论框架中,损伤通过已断裂键的质量分数来跟踪。各向异性损伤包含在这样的假设中:材料中可能共存多种键类型,每种键都有其自身的损伤行为。这种方法恢复了各向同性材料的经典损伤力学公式,但对于各向异性材料不采用张量损伤度量。与经典方法相比,使用可观测状态变量来描述损伤使得模型预测能够直接与实验损伤度量进行比较,如生化分析或拉曼光谱分析。对离散纤维分布中损伤的研究表明,对损伤的恢复能力随纤维束数量的增加而增强;使用连续纤维分布模型对纤维组织进行理想化处理会排除损伤建模。这个损伤框架被用于检验和验证以下假设:软骨构建体的生长会由于合成糖胺聚糖引起的过度肿胀而导致合成胶原基质的损伤。因此,在组织工程研究中必须实施替代策略以防止生长过程中胶原的损伤。

相似文献

4
Modeling Inelastic Responses Using Constrained Reactive Mixtures.使用约束反应混合物对非弹性响应进行建模。
Eur J Mech A Solids. 2023 Jul-Aug;100. doi: 10.1016/j.euromechsol.2023.105009. Epub 2023 May 6.
5
Fatigue of soft fibrous tissues: Multi-scale mechanics and constitutive modeling.软组织疲劳:多尺度力学与本构建模。
Acta Biomater. 2018 Apr 15;71:398-410. doi: 10.1016/j.actbio.2018.03.010. Epub 2018 Mar 15.
7
Hyperelastic continuum models for isotropic athermal fibrous networks.各向同性无热纤维网络的超弹性连续体模型。
Interface Focus. 2022 Oct 14;12(6):20220043. doi: 10.1098/rsfs.2022.0043. eCollection 2022 Dec 6.

引用本文的文献

5
Modeling Inelastic Responses Using Constrained Reactive Mixtures.使用约束反应混合物对非弹性响应进行建模。
Eur J Mech A Solids. 2023 Jul-Aug;100. doi: 10.1016/j.euromechsol.2023.105009. Epub 2023 May 6.

本文引用的文献

1
Viscoelasticity using reactive constrained solid mixtures.使用反应性受限固体混合物的粘弹性。
J Biomech. 2015 Apr 13;48(6):941-7. doi: 10.1016/j.jbiomech.2015.02.019. Epub 2015 Feb 21.
6
Is collagen fiber damage the cause of early softening in articular cartilage?胶原纤维损伤是关节软骨早期软化的原因吗?
Osteoarthritis Cartilage. 2013 Jan;21(1):136-43. doi: 10.1016/j.joca.2012.09.002. Epub 2012 Sep 23.
7
FEBio: finite elements for biomechanics.FEBio:生物力学有限元
J Biomech Eng. 2012 Jan;134(1):011005. doi: 10.1115/1.4005694.
8
Damage mechanics of porcine flexor tendon: mechanical evaluation and modeling.猪屈肌腱的损伤力学:力学评估与建模。
Ann Biomed Eng. 2012 Aug;40(8):1692-707. doi: 10.1007/s10439-012-0538-z. Epub 2012 Mar 8.
10
Multigenerational interstitial growth of biological tissues.生物组织的多代间充质生长。
Biomech Model Mechanobiol. 2010 Dec;9(6):689-702. doi: 10.1007/s10237-010-0205-y. Epub 2010 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验