Mayer V W, Goin C J
Division of Toxicological Studies, Food and Drug Administration, Washington, DC 20204.
Mutat Res. 1989 Dec;224(4):471-8. doi: 10.1016/0165-1218(89)90072-4.
Since chromosomes of fungi are difficult to observe directly, strains have been developed in which chromosome loss can be detected by the use of genetic markers. In the diploid D61.M strain of Saccharomyces cerevisiae, the loss of a copy of chromosome VII that carries 3 dominant wild-type alleles is measured by expression of 3 recessive mutant alleles carried on the other remaining copy of chromosome VII. We have tested the hypothesis that expression of the 3 recessive alleles might be due to 3 simultaneous independent genetic events other than chromosome loss, such as mutation or recombination. We have measured, when possible, the frequencies of expression for each of these recessive alleles, independently and in combination one with another, under both selective and non-selective conditions. Our results show that simultaneous expression of these 3 recessive alleles is attributable to chromosome loss (greater than 98%). Similarly, at least 99% of the nocodazole-induced events are attributable to chromosome loss. In contrast, most if not all of the apparent chromosome loss induced by ethyl methanesulfonate is due to multiple events of mutation or recombination.