Suppr超能文献

膳食果糖与肝脏从头脂肪生成在脂肪肝疾病中的作用

Role of Dietary Fructose and Hepatic De Novo Lipogenesis in Fatty Liver Disease.

作者信息

Softic Samir, Cohen David E, Kahn C Ronald

机构信息

Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, One Joslin Place, Boston, MA, 02215, USA.

Department of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA.

出版信息

Dig Dis Sci. 2016 May;61(5):1282-93. doi: 10.1007/s10620-016-4054-0. Epub 2016 Feb 8.

Abstract

Nonalcoholic fatty liver disease (NAFLD) is a liver manifestation of metabolic syndrome. Overconsumption of high-fat diet (HFD) and increased intake of sugar-sweetened beverages are major risk factors for development of NAFLD. Today the most commonly consumed sugar is high fructose corn syrup. Hepatic lipids may be derived from dietary intake, esterification of plasma free fatty acids (FFA) or hepatic de novo lipogenesis (DNL). A central abnormality in NAFLD is enhanced DNL. Hepatic DNL is increased in individuals with NAFLD, while the contribution of dietary fat and plasma FFA to hepatic lipids is not significantly altered. The importance of DNL in NAFLD is further established in mouse studies with knockout of genes involved in this process. Dietary fructose increases levels of enzymes involved in DNL even more strongly than HFD. Several properties of fructose metabolism make it particularly lipogenic. Fructose is absorbed via portal vein and delivered to the liver in much higher concentrations as compared to other tissues. Fructose increases protein levels of all DNL enzymes during its conversion into triglycerides. Additionally, fructose supports lipogenesis in the setting of insulin resistance as fructose does not require insulin for its metabolism, and it directly stimulates SREBP1c, a major transcriptional regulator of DNL. Fructose also leads to ATP depletion and suppression of mitochondrial fatty acid oxidation, resulting in increased production of reactive oxygen species. Furthermore, fructose promotes ER stress and uric acid formation, additional insulin independent pathways leading to DNL. In summary, fructose metabolism supports DNL more strongly than HFD and hepatic DNL is a central abnormality in NAFLD. Disrupting fructose metabolism in the liver may provide a new therapeutic option for the treatment of NAFLD.

摘要

非酒精性脂肪性肝病(NAFLD)是代谢综合征的肝脏表现。高脂饮食(HFD)摄入过多和含糖饮料摄入量增加是NAFLD发生的主要危险因素。如今最常食用的糖是高果糖玉米糖浆。肝脏脂质可能来源于饮食摄入、血浆游离脂肪酸(FFA)的酯化或肝脏从头脂肪生成(DNL)。NAFLD的一个核心异常是DNL增强。NAFLD患者的肝脏DNL增加,而饮食脂肪和血浆FFA对肝脏脂质的贡献没有显著改变。在涉及此过程的基因敲除小鼠研究中,进一步证实了DNL在NAFLD中的重要性。与HFD相比,饮食中的果糖更强烈地增加参与DNL的酶的水平。果糖代谢的几个特性使其特别易于生成脂肪。果糖通过门静脉吸收,并以比其他组织高得多的浓度输送到肝脏。果糖在转化为甘油三酯的过程中会增加所有DNL酶的蛋白质水平。此外,果糖在胰岛素抵抗的情况下支持脂肪生成,因为果糖代谢不需要胰岛素,并且它直接刺激DNL的主要转录调节因子SREBP1c。果糖还会导致ATP耗竭和线粒体脂肪酸氧化受抑制,从而导致活性氧生成增加。此外,果糖会促进内质网应激和尿酸形成,这是导致DNL的另外两条不依赖胰岛素的途径。总之,果糖代谢比HFD更强烈地支持DNL,肝脏DNL是NAFLD的核心异常。破坏肝脏中的果糖代谢可能为NAFLD的治疗提供一种新的治疗选择。

相似文献

1
Role of Dietary Fructose and Hepatic De Novo Lipogenesis in Fatty Liver Disease.
Dig Dis Sci. 2016 May;61(5):1282-93. doi: 10.1007/s10620-016-4054-0. Epub 2016 Feb 8.
3
Fructose as a key player in the development of fatty liver disease.
World J Gastroenterol. 2013 Feb 28;19(8):1166-72. doi: 10.3748/wjg.v19.i8.1166.
4
Dietary carbohydrates and fatty liver disease: de novo lipogenesis.
Curr Opin Clin Nutr Metab Care. 2018 Jul;21(4):277-282. doi: 10.1097/MCO.0000000000000469.
5
Fructose Consumption, Lipogenesis, and Non-Alcoholic Fatty Liver Disease.
Nutrients. 2017 Sep 6;9(9):981. doi: 10.3390/nu9090981.
6
Fructose and sugar: A major mediator of non-alcoholic fatty liver disease.
J Hepatol. 2018 May;68(5):1063-1075. doi: 10.1016/j.jhep.2018.01.019. Epub 2018 Feb 2.
7
Tcf7l2 in hepatocytes regulates de novo lipogenesis in diet-induced non-alcoholic fatty liver disease in mice.
Diabetologia. 2023 May;66(5):931-954. doi: 10.1007/s00125-023-05878-8. Epub 2023 Feb 10.
9
The role of dietary sugars and de novo lipogenesis in non-alcoholic fatty liver disease.
Nutrients. 2014 Dec 10;6(12):5679-703. doi: 10.3390/nu6125679.
10
Fructose and hepatic insulin resistance.
Crit Rev Clin Lab Sci. 2020 Aug;57(5):308-322. doi: 10.1080/10408363.2019.1711360. Epub 2020 Jan 14.

引用本文的文献

3
High fructose consumption aggravates inflammation by promoting effector T cell generation via inducing metabolic reprogramming.
Signal Transduct Target Ther. 2025 Aug 26;10(1):271. doi: 10.1038/s41392-025-02359-9.
5
ANGPTL3 orchestrates hepatic fructose sensing and metabolism.
Cell Rep. 2025 Jul 22;44(7):115962. doi: 10.1016/j.celrep.2025.115962. Epub 2025 Jul 9.
6
TREM2 in MASH: integrating lipid metabolism and immune response.
Front Immunol. 2025 Jun 25;16:1604837. doi: 10.3389/fimmu.2025.1604837. eCollection 2025.
7
Rebaudioside D and M, the next-generation sugar substitutes, do not exacerbate metabolic dysfunction in high-fat diet mice.
Food Chem X. 2025 Jun 19;29:102679. doi: 10.1016/j.fochx.2025.102679. eCollection 2025 Jul.

本文引用的文献

1
Isocaloric fructose restriction and metabolic improvement in children with obesity and metabolic syndrome.
Obesity (Silver Spring). 2016 Feb;24(2):453-60. doi: 10.1002/oby.21371. Epub 2015 Oct 26.
2
Liver transplantation and non-alcoholic fatty liver disease.
World J Gastroenterol. 2014 Nov 14;20(42):15532-8. doi: 10.3748/wjg.v20.i42.15532.
5
Added sugar intake and cardiovascular diseases mortality among US adults.
JAMA Intern Med. 2014 Apr;174(4):516-24. doi: 10.1001/jamainternmed.2013.13563.
6
Interplay between FGF21 and insulin action in the liver regulates metabolism.
J Clin Invest. 2014 Feb;124(2):515-27. doi: 10.1172/JCI67353. Epub 2014 Jan 9.
7
Insulin receptor signaling in normal and insulin-resistant states.
Cold Spring Harb Perspect Biol. 2014 Jan 1;6(1):a009191. doi: 10.1101/cshperspect.a009191.
8
Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease.
Gastroenterology. 2014 Mar;146(3):726-35. doi: 10.1053/j.gastro.2013.11.049. Epub 2013 Dec 4.
9
Lipoprotein metabolism, dyslipidemia, and nonalcoholic fatty liver disease.
Semin Liver Dis. 2013 Nov;33(4):380-8. doi: 10.1055/s-0033-1358519. Epub 2013 Nov 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验