Shikanai Toshiharu
Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, 102-0076, Japan.
Photosynth Res. 2016 Sep;129(3):253-60. doi: 10.1007/s11120-016-0227-0. Epub 2016 Feb 8.
Cyclic electron transport around photosystem I (PSI) generates ∆pH across the thylakoid membrane without net production of NADPH. In angiosperms, two pathways of PSI cyclic electron transport operate. The main pathway depends on PGR5/PGRL1 proteins and is likely identical to the historical Arnon's pathway. The minor pathway depends on chloroplast NADH dehydrogenase-like (NDH) complex. In assays of their rates in vivo, the two independent pathways are often mixed together. Theoretically, linear electron transport from water to NADP(+) cannot satisfy the ATP/NADPH production ratio required by the Calvin-Benson cycle and photorespiration. PGR5/PGRL1-dependent PSI cyclic electron transport contributes substantially to the supply of ATP for CO2 fixation, as does linear electron transport. Also, the contribution of chloroplast NDH cannot be ignored, especially at low light intensity, although the extent of the contribution depends on the plant species. An increase in proton conductivity of ATP synthase may compensate ATP synthesis to some extent in the pgr5 mutant. Combined with the decreased rate of ∆pH generation, however, this mechanism sacrifices homeostasis of the thylakoid lumen pH, seriously disturbing the pH-dependent regulation of photosynthetic electron transport, induction of qE, and downregulation of the cytochrome b 6 f complex. PGR5/PGRL1-dependent PSI cyclic electron transport produces sufficient proton motive force for ATP synthesis and the regulation of photosynthetic electron transport.
围绕光系统I(PSI)的循环电子传递在类囊体膜上产生跨膜质子动力势(∆pH),但不产生净NADPH。在被子植物中,存在两条PSI循环电子传递途径。主要途径依赖于PGR5/PGRL1蛋白,可能与历史上的阿农途径相同。次要途径依赖于叶绿体NADH脱氢酶样(NDH)复合体。在体内测定它们的速率时,这两条独立的途径常常混合在一起。理论上,从水到NADP(+)的线性电子传递无法满足卡尔文-本森循环和光呼吸所需的ATP/NADPH生成比例。依赖于PGR5/PGRL1的PSI循环电子传递对CO2固定所需ATP的供应有很大贡献,线性电子传递也是如此。此外,叶绿体NDH的贡献也不可忽视,尤其是在低光强下,尽管其贡献程度取决于植物种类。ATP合酶质子传导率的增加可能在一定程度上补偿pgr5突变体中的ATP合成。然而,结合∆pH产生速率的降低,这种机制牺牲了类囊体腔pH的稳态,严重扰乱了光合电子传递的pH依赖性调节、qE的诱导以及细胞色素b6f复合体的下调。依赖于PGR5/PGRL1的PSI循环电子传递为ATP合成和光合电子传递的调节产生了足够的质子动力势。