Suppr超能文献

在没有光合控制的情况下,通过 PGR5 途径进行高循环电子转移。

High cyclic electron transfer via the PGR5 pathway in the absence of photosynthetic control.

机构信息

Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.

Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 4NL, UK.

出版信息

Plant Physiol. 2023 May 2;192(1):370-386. doi: 10.1093/plphys/kiad084.

Abstract

The light reactions of photosynthesis couple electron and proton transfers across the thylakoid membrane, generating NADPH, and proton motive force (pmf) that powers the endergonic synthesis of ATP by ATP synthase. ATP and NADPH are required for CO2 fixation into carbohydrates by the Calvin-Benson-Bassham cycle. The dominant ΔpH component of the pmf also plays a photoprotective role in regulating photosystem II light harvesting efficiency through nonphotochemical quenching (NPQ) and photosynthetic control via electron transfer from cytochrome b6f (cytb6f) to photosystem I. ΔpH can be adjusted by increasing the proton influx into the thylakoid lumen via upregulation of cyclic electron transfer (CET) or decreasing proton efflux via downregulation of ATP synthase conductivity (gH+). The interplay and relative contributions of these two elements of ΔpH control to photoprotection are not well understood. Here, we showed that an Arabidopsis (Arabidopsis thaliana) ATP synthase mutant hunger for oxygen in photosynthetic transfer reaction 2 (hope2) with 40% higher proton efflux has supercharged CET. Double crosses of hope2 with the CET-deficient proton gradient regulation 5 and ndh-like photosynthetic complex I lines revealed that PROTON GRADIENT REGULATION 5 (PGR5)-dependent CET is the major pathway contributing to higher proton influx. PGR5-dependent CET allowed hope2 to maintain wild-type levels of ΔpH, CO2 fixation and NPQ, however photosynthetic control remained absent and PSI was prone to photoinhibition. Therefore, high CET in the absence of ATP synthase regulation is insufficient for PSI photoprotection.

摘要

光合作用的光反应将电子和质子转移穿过类囊体膜,生成 NADPH 和质子动力势(pmf),pmf 为 ATP 合酶将 ATP 合成的吸能反应提供动力。ATP 和 NADPH 是卡尔文-本森-巴斯汉姆循环将 CO2 固定为碳水化合物所必需的。pmf 的主要 ΔpH 成分也通过非光化学猝灭(NPQ)和通过细胞色素 b6f(cytb6f)到光系统 I 的电子转移对光合系统 II 光捕获效率进行光保护调节。通过上调环式电子传递(CET)增加质子流入类囊体腔或通过下调 ATP 合酶电导(gH+)减少质子外排,可以调节 ΔpH。这两个调节 ΔpH 的元素相互作用和相对贡献对光保护的作用尚不清楚。在这里,我们表明,拟南芥(Arabidopsis thaliana)ATP 合酶突变体饥饿在光合转移反应 2(hope2)中,质子外排率高出 40%,CET 被超激化。hope2 与 CET 缺陷型质子梯度调节 5 和 ndh 样光系统 I 复合物的双交叉表明,PGR5 依赖性 CET 是导致质子流入增加的主要途径。PGR5 依赖性 CET 使 hope2 能够维持野生型水平的 ΔpH、CO2 固定和 NPQ,然而光合作用控制仍然不存在,PSI 容易受到光抑制。因此,缺乏 ATP 合酶调节的高 CET 不足以保护 PSI 免受光抑制。

相似文献

1
High cyclic electron transfer via the PGR5 pathway in the absence of photosynthetic control.
Plant Physiol. 2023 May 2;192(1):370-386. doi: 10.1093/plphys/kiad084.
3
Regulatory network of proton motive force: contribution of cyclic electron transport around photosystem I.
Photosynth Res. 2016 Sep;129(3):253-60. doi: 10.1007/s11120-016-0227-0. Epub 2016 Feb 8.
5
PGR5-PGRL1-Dependent Cyclic Electron Transport Modulates Linear Electron Transport Rate in Arabidopsis thaliana.
Mol Plant. 2016 Feb 1;9(2):271-288. doi: 10.1016/j.molp.2015.12.001. Epub 2015 Dec 11.
6
PGR5-Dependent Cyclic Electron Flow Protects Photosystem I under Fluctuating Light at Donor and Acceptor Sides.
Plant Physiol. 2019 Feb;179(2):588-600. doi: 10.1104/pp.18.01343. Epub 2018 Nov 21.
7
Contribution of NDH-dependent cyclic electron transport around photosystem I to the generation of proton motive force in the weak mutant allele of pgr5.
Biochim Biophys Acta Bioenerg. 2019 May 1;1860(5):369-374. doi: 10.1016/j.bbabio.2019.03.003. Epub 2019 Mar 13.
8
Distinct contribution of two cyclic electron transport pathways to P700 oxidation.
Plant Physiol. 2023 May 2;192(1):326-341. doi: 10.1093/plphys/kiac557.
9
Contribution of Cyclic and Pseudo-cyclic Electron Transport to the Formation of Proton Motive Force in Chloroplasts.
Mol Plant. 2017 Jan 9;10(1):20-29. doi: 10.1016/j.molp.2016.08.004. Epub 2016 Aug 26.

引用本文的文献

1
Structure, regulation and assembly of the photosynthetic electron transport chain.
Nat Rev Mol Cell Biol. 2025 May 21. doi: 10.1038/s41580-025-00847-y.
3
Cyclic electron flow compensates loss of PGDH3 and concomitant stromal NADH reduction.
Sci Rep. 2024 Nov 26;14(1):29274. doi: 10.1038/s41598-024-80836-x.
4
Photosynthetic control at the cytochrome b6f complex.
Plant Cell. 2024 Oct 3;36(10):4065-4079. doi: 10.1093/plcell/koae133.

本文引用的文献

2
Supramolecular assembly of chloroplast NADH dehydrogenase-like complex with photosystem I from Arabidopsis thaliana.
Mol Plant. 2022 Mar 7;15(3):454-467. doi: 10.1016/j.molp.2022.01.020. Epub 2022 Feb 2.
3
Architecture of the chloroplast PSI-NDH supercomplex in Hordeum vulgare.
Nature. 2022 Jan;601(7894):649-654. doi: 10.1038/s41586-021-04277-6. Epub 2021 Dec 8.
6
Proton motive force in plant photosynthesis dominated by ΔpH in both low and high light.
Plant Physiol. 2021 Sep 4;187(1):263-275. doi: 10.1093/plphys/kiab270.
7
PGRL2 triggers degradation of PGR5 in the absence of PGRL1.
Nat Commun. 2021 Jun 24;12(1):3941. doi: 10.1038/s41467-021-24107-7.
8
IonQuant Enables Accurate and Sensitive Label-Free Quantification With FDR-Controlled Match-Between-Runs.
Mol Cell Proteomics. 2021;20:100077. doi: 10.1016/j.mcpro.2021.100077. Epub 2021 Apr 2.
10
Cytochrome bf - Orchestrator of photosynthetic electron transfer.
Biochim Biophys Acta Bioenerg. 2021 May 1;1862(5):148380. doi: 10.1016/j.bbabio.2021.148380. Epub 2021 Jan 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验