Suppr超能文献

使用基于物理的定量构效关系进行外推预测。

Extrapolative prediction using physically-based QSAR.

作者信息

Cleves Ann E, Jain Ajay N

机构信息

Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.

Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.

出版信息

J Comput Aided Mol Des. 2016 Feb;30(2):127-52. doi: 10.1007/s10822-016-9896-1. Epub 2016 Feb 10.

Abstract

Surflex-QMOD integrates chemical structure and activity data to produce physically-realistic models for binding affinity prediction . Here, we apply QMOD to a 3D-QSAR benchmark dataset and show broad applicability to a diverse set of targets. Testing new ligands within the QMOD model employs automated flexible molecular alignment, with the model itself defining the optimal pose for each ligand. QMOD performance was compared to that of four approaches that depended on manual alignments (CoMFA, two variations of CoMSIA, and CMF). QMOD showed comparable performance to the other methods on a challenging, but structurally limited, test set. The QMOD models were also applied to test a large and structurally diverse dataset of ligands from ChEMBL, nearly all of which were synthesized years after those used for model construction. Extrapolation across diverse chemical structures was possible because the method addresses the ligand pose problem and provides structural and geometric means to quantitatively identify ligands within a model's applicability domain. Predictions for such ligands for the four tested targets were highly statistically significant based on rank correlation. Those molecules predicted to be highly active (pK(i) ≥ 7.5) had a mean experimental pK(i) of 7.5, with potent and structurally novel ligands being identified by QMOD for each target.

摘要

Surflex-QMOD整合化学结构和活性数据,以生成用于结合亲和力预测的物理逼真模型。在此,我们将QMOD应用于一个3D-QSAR基准数据集,并展示了其对多种目标的广泛适用性。在QMOD模型中测试新配体采用自动灵活分子比对,模型本身为每个配体定义最佳构象。将QMOD的性能与四种依赖手动比对的方法(CoMFA、CoMSIA的两种变体和CMF)进行了比较。在一个具有挑战性但结构有限的测试集上,QMOD表现出与其他方法相当的性能。QMOD模型还被应用于测试来自ChEMBL的一个庞大且结构多样的配体数据集,几乎所有这些配体都是在用于模型构建的配体合成多年后合成的。跨不同化学结构的外推是可能的,因为该方法解决了配体构象问题,并提供了结构和几何手段来定量识别模型适用范围内的配体。基于秩相关,对四个测试目标的此类配体的预测具有高度统计学意义。那些预测为高活性(pK(i)≥7.5)的分子的平均实验pK(i)为7.5,QMOD为每个目标识别出了强效且结构新颖的配体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0843/4796382/36e4a6288f18/10822_2016_9896_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验