Suppr超能文献

从 UK-2A 到氟吡肟酰胺:主动学习识别大环天然产物的模拟物。

From UK-2A to florylpicoxamid: Active learning to identify a mimic of a macrocyclic natural product.

机构信息

BioPharmics Division, Optibrium Limited, Cambridge, CB25 9GL, UK.

Corteva Agriscience, Indianapolis, IN, 46268, USA.

出版信息

J Comput Aided Mol Des. 2024 Apr 17;38(1):19. doi: 10.1007/s10822-024-00555-3.

Abstract

Scaffold replacement as part of an optimization process that requires maintenance of potency, desirable biodistribution, metabolic stability, and considerations of synthesis at very large scale is a complex challenge. Here, we consider a set of over 1000 time-stamped compounds, beginning with a macrocyclic natural-product lead and ending with a broad-spectrum crop anti-fungal. We demonstrate the application of the QuanSA 3D-QSAR method employing an active learning procedure that combines two types of molecular selection. The first identifies compounds predicted to be most active of those most likely to be well-covered by the model. The second identifies compounds predicted to be most informative based on exhibiting low predicted activity but showing high 3D similarity to a highly active nearest-neighbor training molecule. Beginning with just 100 compounds, using a deterministic and automatic procedure, five rounds of 20-compound selection and model refinement identifies the binding metabolic form of florylpicoxamid. We show how iterative refinement broadens the domain of applicability of the successive models while also enhancing predictive accuracy. We also demonstrate how a simple method requiring very sparse data can be used to generate relevant ideas for synthetic candidates.

摘要

作为需要维持效力、理想的生物分布、代谢稳定性以及大规模合成考虑的优化过程的一部分,支架替换是一个复杂的挑战。在这里,我们考虑了一组超过 1000 个时间标记的化合物,从一个大环天然产物先导化合物开始,最后是一种广谱作物抗真菌剂。我们展示了 QuanSA 3D-QSAR 方法的应用,该方法采用了一种主动学习程序,该程序结合了两种类型的分子选择。第一种方法识别出预测最活跃的化合物,这些化合物最有可能被模型很好地覆盖。第二种方法识别出预测最具信息量的化合物,这些化合物的预测活性较低,但与高活性最近邻训练分子具有很高的 3D 相似性。从最初的 100 个化合物开始,使用确定性和自动程序,经过五轮 20 个化合物的选择和模型细化,确定了 florylpicoxamid 的结合代谢形式。我们展示了如何通过迭代细化来扩大连续模型的适用范围,同时提高预测准确性。我们还展示了如何使用一种仅需要非常稀疏数据的简单方法来生成合成候选物的相关想法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09ca/11639229/63e47e9036c6/10822_2024_555_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验