Fritz Günter, Steuber Julia
Department of Neuropathology, University of Freiburg, Breisacherstrasse 64, D-79106, Freiburg, Germany.
Institute of Microbiology, University of Hohenheim (Stuttgart), Garbenstrasse 30, D-70599, Stuttgart, Germany.
Met Ions Life Sci. 2016;16:349-90. doi: 10.1007/978-3-319-21756-7_11.
Among the alkali cations, Na(+) has an extraordinary role in living cells since it is used to charge the battery of life. To this end, sophisticated protein complexes in biological membranes convert chemical energy obtained from oxidation of NADH, or hydrolysis of ATP, into an electrochemical gradient of sodium ions. Cells use this so-called sodium-motive force stored in energy-converting membranes for important processes like uptake of nutrients, motility, or expulsion of toxic compounds. The Na(+) pumps act in concert with other enzymes embedded in the lipid membrane, and together they form the respiratory chain which achieves the oxidation of NADH derived from nutrients under formation of an electrochemical sodium (or proton) gradient. We explain why Na(+) pumps are important model systems for the homologous, proton-translocating complexes, and hope to convince the reader that studying the Na(+)-translocating ATP synthase from the unimpressive bacterium Ilyobacter tartaricus had a big impact on our understanding of energy conversion by human ATP synthase. The Na(+)-translocating systems described here are either driven by the oxidation of NADH, the carrier of redox equivalents of cells, or by the hydrolysis of adenosine 5'-triphosphate, the universal high-energy compound of cells. The electrochemical energy provided by these respiratory Na(+) pumps, the NADH dehydrogenase or the ATPase, drives other Na(+) transport systems like the bacterial flagellum discussed in the last part of this chapter. The flagellar motor does not represent a Na(+) pump, but like ATPase, it operates by a rotational mechanism. By comparing these two Na(+) -translocating, rotary machines, we obtain new insight into the possible mechanisms of Na(+) transport through the stator proteins of the flagellar motor. Na(+) pumps are widespread in pathogenic bacteria where they play an important role in metabolism, making them novel targets for antibiotics.
在碱金属阳离子中,Na⁺在活细胞中具有特殊作用,因为它用于为生命的“电池”充电。为此,生物膜中的复杂蛋白质复合物将从NADH氧化或ATP水解获得的化学能转化为钠离子的电化学梯度。细胞利用这种储存在能量转换膜中的所谓钠动力来进行重要过程,如营养物质摄取、运动或排出有毒化合物。Na⁺泵与嵌入脂质膜中的其他酶协同作用,共同形成呼吸链,在形成电化学钠(或质子)梯度的情况下实现营养物质衍生的NADH的氧化。我们解释了为什么Na⁺泵是同源质子转运复合物的重要模型系统,并希望让读者相信,研究来自不起眼的塔氏伊洛杆菌的Na⁺转运ATP合酶对我们理解人类ATP合酶的能量转换有很大影响。这里描述的Na⁺转运系统要么由细胞氧化还原当量的载体NADH的氧化驱动,要么由细胞通用的高能化合物腺苷5'-三磷酸的水解驱动。这些呼吸性Na⁺泵、NADH脱氢酶或ATP酶提供的电化学能量驱动其他Na⁺转运系统,如本章最后一部分讨论的细菌鞭毛。鞭毛马达不是Na⁺泵,但与ATP酶一样,它通过旋转机制运行。通过比较这两种Na⁺转运旋转机器,我们对Na⁺通过鞭毛马达定子蛋白的可能转运机制有了新的认识。Na⁺泵广泛存在于致病细菌中,在新陈代谢中发挥重要作用,使其成为抗生素的新靶点。