Skulachev V P
Department of Bioenergetics, Moscow State University, USSR.
J Bioenerg Biomembr. 1989 Dec;21(6):635-47. doi: 10.1007/BF00762683.
The progress of bioenergetic studies on the role of Na+ in bacteria is reviewed. Experiments performed over the past decade on several bacterial species of quite different taxonomic positions show that Na+ can, under certain conditions, substitute for H+ as the coupling ion. Various primary Na+ pumps (delta mu Na+ generators) are described, i.e., Na+ -motive decarboxylases, NADH-quinone reductase, terminal oxidase, and ATPase. The delta mu Na+ formed is shown to be consumed by Na+ driven ATP-synthase, Na+ flagellar motor, numerous Na+, solute symporters, and the methanogenesis-linked reverse electron transfer system. In Vibrio alginolyticus, it was found that delta mu Na+, generated by NADH-quinone reductase, can be utilized to support all three types of membrane-linked work, i.e., chemical (ATP synthesis), osmotic (Na+, solute symports), and mechanical (rotation of the flagellum). In Propionigenum modestum, circulation of Na+ proved to be the only mechanism of energy coupling. In other species studied, the Na+ cycle seems to coexist with the H+ cycle. For instance, in V. alginolyticus the initial and terminal steps of the respiratory chain are Na+ - and H+ -motive, respectively, whereas ATP hydrolysis is competent in the uphill transfer of Na+ as well as of H+. In the alkalo- and halotolerant Bacillus FTU, there are H+ - and Na+ -motive terminal oxidases. Sometimes, the Na+ -translocating enzyme strongly differs from its H+ -translocating homolog. So, the Na+ -motive and H+ -motive NADH-quinone reductases are composed of different subunits and prosthetic groups. The H+ -motive and Na+ -motive terminal oxidases differ in that the former is of aa3-type and sensitive to micromolar cyanide whereas the latter is of another type and sensitive to millimolar cyanide. At the same time, both Na+ and H+ can be translocated by one and the same P. modestum ATPase which is of the F0F1-type and sensitive to DCCD. The sodium cycle, i.e., a system composed of primary delta mu Na+ generator(s) and delta mu Na+ consumer(s), is already described in many species of marine aerobic and anaerobic eubacteria and archaebacteria belonging to the following genera: Vibrio, Bacillus, Alcaligenes, Alteromonas, Salmonella, Klebsiella, Propionigenum, Clostridium, Veilonella, Acidaminococcus, Streptococcus, Peptococcus, Exiguobacterium, Fusobacterium, Methanobacterium, Methanococcus, Methanosarcina, etc. Thus, the "sodium world" seems to occupy a rather extensive area in the biosphere.
本文综述了关于钠离子在细菌中作用的生物能量学研究进展。过去十年对几种分类地位截然不同的细菌所做的实验表明,在某些条件下,钠离子可以替代氢离子作为偶联离子。文中描述了各种初级钠离子泵(ΔμNa⁺产生器),即钠离子驱动的脱羧酶、NADH - 醌还原酶、末端氧化酶和ATP酶。所形成的ΔμNa⁺被证明可被钠离子驱动的ATP合酶、钠离子鞭毛马达、众多钠离子 - 溶质同向转运体以及与产甲烷作用相关的逆向电子传递系统所消耗。在溶藻弧菌中发现,由NADH - 醌还原酶产生的ΔμNa⁺可用于支持所有三种类型的膜相关功,即化学功(ATP合成)、渗透功(钠离子 - 溶质同向转运)和机械功(鞭毛旋转)。在中度嗜丙酸菌中,钠离子循环被证明是能量偶联的唯一机制。在其他所研究的物种中,钠离子循环似乎与氢离子循环共存。例如,在溶藻弧菌中,呼吸链的起始和末端步骤分别是钠离子驱动和氢离子驱动的,而ATP水解在钠离子和氢离子的上坡转运中均起作用。在耐碱和耐盐的芽孢杆菌FTU中,存在氢离子驱动和钠离子驱动的末端氧化酶。有时,转运钠离子的酶与其转运氢离子的同源酶有很大不同。因此,钠离子驱动和氢离子驱动的NADH - 醌还原酶由不同的亚基和辅基组成。氢离子驱动和钠离子驱动的末端氧化酶的区别在于,前者是aa3型,对微摩尔级的氰化物敏感,而后者是另一种类型,对毫摩尔级的氰化物敏感。同时,钠离子和氢离子都可由同一个属于F0F1型且对二环己基碳二亚胺(DCCD)敏感的中度嗜丙酸菌ATP酶转运。钠离子循环,即由初级ΔμNa⁺产生器和ΔμNa⁺消耗器组成的系统,已在许多属于以下属的海洋需氧和厌氧真细菌及古细菌中被描述:弧菌属、芽孢杆菌属、产碱菌属、交替单胞菌属、沙门氏菌属、克雷伯氏菌属、嗜丙酸菌属、梭菌属、韦荣氏球菌属、氨基酸球菌属、链球菌属、消化球菌属、微小杆菌属、梭杆菌属、甲烷杆菌属、甲烷球菌属、甲烷八叠球菌属等。因此,“钠世界”似乎在生物圈中占据了相当广泛的区域。